DeTor: Provably Avoiding Geographic Regions in Tor

Zhihao Li, Stephen Herwig, Dave Levin

Tor Network Aims to provide *anonymous* communications

source

source

Entry

source

source

Tor Network Aims to provides *unlinkable* communications

Tor Network Aims to provides unlinkable communications

Tor Network Aims to provides unlinkable communications

Adversary cannot link source with destination

Vulnerable to traffic correlation attacks

Vulnerable to traffic correlation attacks

Vulnerable to traffic correlation attacks

Vulnerable to traffic correlation attacks

Vulnerable to traffic correlation attacks

- Adversaries can:
 - launch various attacks when on the path

 - attract routes to their administrative domains

• hide from network topology measurement (e.g. traceroute)

- Adversaries can:
 - launch various attacks when on the path

 - attract routes to their administrative domains

• hide from network topology measurement (e.g. traceroute)

- Adversaries can:
 - launch various attacks when on the path

 - attract routes to their administrative domains
- Adversaries cannot:
 - violate cryptographic assumptions

hide from network topology measurement (e.g. traceroute)

- Adversaries can:
 - launch various attacks when on the path

 - attract routes to their administrative domains
- Adversaries cannot:
 - violate cryptographic assumptions

hide from network topology measurement (e.g. traceroute)

Fundamental assumption: We know the geographic boundaries wherein the attackers reside

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-once

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

Never-once

never traverse specified regions

> Provide per-packet proof of avoidance

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry & exit legs never traverse the same regions

Allow users to avoid adversaries with smart circuits selection

DeTor goals

Allow users to avoid adversaries with smart circuits selection

DeTor goals

Allow users to avoid adversaries with smart circuits selection

DeTor goals

Without having to know underlying routes

Allow users to avoid adversaries with smart circuits selection

DeTor goals

Without having to know underlying routes

Without modifications to Internet routers

Allow users to avoid adversaries with smart circuits selection

DeTor goals

Without having to know underlying routes

Without modifications to Internet routers

> Without changes to Tor's protocol

Proof

Proof

Provide proofs of avoidance

Measurement of roundtrip time

The shortest possible RTT = 2 d / cthru to

$\frac{\text{Measured}}{\text{RTT}} \ll \frac{\text{The shortest possible RTT}}{\text{thru} to} = 2 d / c$

$\frac{\text{Measured}}{\text{RTT}} \ll \frac{\text{The shortest possible RTT}}{\text{thru} \text{ to }} = \frac{2 \text{ d}}{c}$

 \Rightarrow The packet could not have traversed \bigcirc to \bigcirc

Measured « The shortest possible RTT = 2 d / c RTT = 2 d / c

 \Rightarrow The packet could not have traversed \bigcirc to \bigcirc

Alibi Condition

\Rightarrow The packet reached

\Rightarrow The packet reached

\Rightarrow The packet reached

\Rightarrow The packet reached

The packet could not &

Never-once

never traverse specified regions

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry&exit legs never traverse the same regions

Provide per-packet proof of avoidance

Never-once

never traverse specified regions

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry&exit legs never traverse the same regions

Provide per-packet proof of avoidance

DeTor: never-once avoidance Avoid user specified geographic regions

DeTor: never-once avoidance The shortest possible RTT thru and to

shortest distance $= d_1$

DeTor: never-once avoidance The shortest possible RTT thru and to

The shortest possible RTT = $2 \min{\{d_i\}}/c$ thru and to

\Rightarrow The packet could not have traversed (to

DeTor: never-once avoidance Achieving provable avoidance

$\Rightarrow \begin{array}{c} \text{The packet traversed } \overleftarrow{\bullet} \\ \text{and reached} \end{array}$

$\Rightarrow \begin{array}{c} \text{The packet traversed } \overleftarrow{\bullet} \\ \text{and reached} \end{array}$

$\Rightarrow \begin{array}{c} \text{The packet traversed } \overleftarrow{\bullet} \\ \text{and reached} \end{array}$

$\Rightarrow \begin{array}{c} \text{The packet traversed } \overleftarrow{\bullet} \\ \text{and reached} \end{array}$

 $\Rightarrow \begin{array}{c} \text{The packet could not} \\ \text{have traversed} & \text{and} \end{array}$

Never-once

never traverse specified regions

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry&exit legs never traverse the same regions

Provide per-packet proof of avoidance

Never-once

never traverse specified regions

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry&exit legs never traverse the same regions

Provide per-packet proof of avoidance

Measured RTT = shortest possible RTT + extra

Measured RTT = \sum shortest possible RTT + \sum extra

Measured RTT = \sum shortest possible RTT + \sum extra

Measured RTT = \sum shortest possible RTT + \sum extra

Upper bound RTT $\geq 2(a+b)/c$

D

The packet could possibly reach any point in the ellipse

Compute the worst-case scenarios for both entry and exit legs, separately

no country intersects with both ellipses

no country intersects with both ellipses

 \bigcup

no country intersects with both ellipses

packet over entry/exit legs could not have traversed the same country

For each country intersects with both ellipses as

For each country intersects with both ellipses as

The shortest possible RTT thru Tor and entry & exit legs traverse

For each country intersects with both ellipses as

The shortest possible RTT thru Tor and entry & exit legs traverse

For each country intersects with both ellipses as

The shortest possible Measured K RTT thru Tor and entry & exit legs traverse

For each country intersects with both ellipses as

The shortest possible Measured K RTT thru Tor and entry & exit legs traverse

> The packet could not have traversed over entry & exit legs

Evaluation Through simulation

Evaluation Through simulation

- 50 random real Tor nodes
 - with GPS locations and pair-wise RTTs using Ting

choose sources and destinations among these nodes

Evaluation Through simulation

- 50 random real Tor nodes

 - with GPS locations and pair-wise RTTs using Ting choose sources and destinations among these nodes
- Eight countries to avoid for never-once: 0 China, India, PR Korea, Russia, Saudi Arabia, Syria, Japan, US

How successful is DeTor?

- How well do DeTor circuits perform?
- How diverse are the DeTor circuits?

Evaluation

Never-once success rate

Successful with DeTor

- Theoretically avoid, but failed with real RTTs
- No circuits could provably avoid
- No trusted Tor nodes
- Source/Destination in Forbidden region

Never-once success rate

Most src-dst pairs can successful find never-once circuits

Successful with DeTor

- Theoretically avoid, but failed with real RTTs
- No circuits could provably avoid
- No trusted Tor nodes
- Source/Destination in Forbidden region

Never-once success rate

Failure typically arises when users are in or close to the regions to avoid

Successful with DeTor

Theoretically avoid, but failed with real RTTs

- No circuits could provably avoid
- No trusted Tor nodes
- Source/Destination in Forbidden region

Never-once —

Number of never-once circuits Half of src-dst pairs have over 500 never-once circuits

Cumulat of Sro

Never-once

Tor with no Chinese relays provably avoids China less than 10% of the time

Never-once

Client-side RTTs might be enough to address many attacks

DeTor circuits tends to have lower RTTs

Avoiding China

400 600 800 1000 1200 1400 **Round-trip Time (msec)**

DeTor circuits tends to have lower RTTs

400 600 800 1000 1200 1400 **Round-trip Time (msec)**

DeTor: never-once avoidance Achieving provable avoidance

$\begin{array}{ll} \mbox{Measured} \\ \mbox{RTT} \end{array} & \ll \begin{tabular}{l} \mbox{The shortest possible RTT} \\ \mbox{thru} & \end{tabular} \end{tabular} \end{tabular} = 2 \mbox{min{d_i}/ c} \end{tabular} \end{tabular} \end{tabular}$

DeTor: never-once avoidance Achieving provable avoidance

$\ll \frac{\text{The shortest possible RTT}}{\text{thru}} = 2 \min\{d_i\}/c$

Other results

- DeTor circuits usually have higher bandwidth
- DeTor introduces slight node selection bias
- Most nodes serve on few DeTor circuits
- Possible to predict whether a circuit will achieve provable avoidance

Never-once

never traverse specified regions

- Proofs of avoidance verify that packets over DeTor circuits have avoided geographic regions
- DeTor circuits
 - are successful for most src-dst pairs
 - have better performance
 - introduce small node selection bias

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry & exit legs never traverse the same regions

Code and data available at: detor.cs.umd.edu

Never-once

never traverse specified regions

- Proofs of avoidance verify that packets over DeTor circuits have avoided geographic regions
- DeTor circuits
 - are successful for most src-dst pairs
 - have better performance
 - introduce small node selection bias

DeTor

With smart circuit selection, it is possible to provably avoid geographic regions with Tor

Never-twice

entry & exit legs never traverse the same regions

Code and data available at: detor.cs.umd.edu