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Software Updates
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 Hilary Mason's Twitter A program tape for the 1944 Harvard Mark I, 

one of the first digital computers. Wikipedia.

https://twitter.com/hmason/status/520367337925390337
https://en.wikipedia.org/wiki/Patch_(computing)


• Softwares updates are used to patch disclosed vulnerabilities, add new 
features, and improve security posture


• If you do not update your system, things can go bad…
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The Sun

Forbes

The Verge

Software Updates



• But even if you do update your system regularly, things can go wrong too…


• Software-update systems are a lucrative attack target due to their 
centralized design and potential impact on users
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Software Updates

How can we make software-update 
systems more secure and transparent?



Software Release Pipeline
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Challenges
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Talos report on 


Petya/NotPetya attacks
Mashable

1. Make software-update process resilient to partial key compromise

Kaspersky Securelist
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2. Prevent malicious substitution of a release binary during building process
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Over 90% of the source packages  
included in Debian 9 will build bit-
for-bit identical binary packages
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Challenges
2. Prevent malicious substitution of a release binary during a build process
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Challenges

How many of you have reproducibly 
built software binaries for personal use?



Building the Tor Browser bundle 

takes 32 hours on a modern laptop 
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Challenges
2. Prevent malicious substitution of a release binary during a build process

Closed-source software?
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3. Protect users from targeted attacks by coerced or bribed developers
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or compromise


242424

Build 
server

Developers

Users

Distribution 
center



Challenges

25252525

4. Enable developers to securely rotate their signing keys in case of renewal 
or compromise


Developers

Users

Distribution 
center

Build 
server



Challenges

26262626

4. Enable developers to securely rotate their signing keys in case of renewal 
or compromise


Developers

Users

Distribution 
center

Build 
server



Challenges

27272727

4. Enable developers to securely rotate their signing keys in case of renewal 
or compromise


Developers

Users

Distribution 
center

Build 
server



Design of CHAINIAC
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Roadmap to CHAINIAC
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Decentralized 
Release Approval Anti-equivocation Key EvolutionVerified Builds



Decentralized Release-Approval
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Background
• Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoSi
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1

record

2

record

3

record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

References 
• Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp 

Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 
Keeping Authorities “Honest or Bust” with Decentralized Witness 
Cosigning. In 37th IEEE Symposium on Security and Privacy, May 2016.


• Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, 
Linus Gasser, and Bryan Ford. Enhancing Bitcoin Security and Performance 
with Strong Consistency via Collective Signing. In Proceedings of the 25th 
USENIX Conference on Security Symposium, 2016.

https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf


Verified Builds
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Release Policy File 
- List of individual 
developer public keys 

- Signing threshold 

- Cothority public key 

- Supported platforms for 
verified builds 

- …

Verified Builds
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Anti-equivocation Measures
3. Protect users from targeted attacks by coerced or bribed developers
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Evolution of Developer Keys
4. Enable developers to securely rotate their signing keys
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Skipchains



Skipchains
• Novel data structure: blockchain + skip lists


• Blocks have multi-hop two-way links:


‣ Backward links - hashes of past blocks


‣ Forward links - (collective) signatures


• Secure and efficient traversal of arbitrary long timelines
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Skipchains
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Cothority 
configuration

Skipblock Backward link (hash) Forward link (co-signature)



Implementation and Evaluation



Implementation
• CHAINIAC is implemented in Go


‣ Using the DEDIS Kyber crypto library and Onet networking framework


‣ Available open-source at https://github.com/dedis/paper_chainiac
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https://github.com/dedis/paper_chainiac


Evaluation Methodology
What is the cost effect of CHAINIAC on cothority nodes and on clients?


• Cothority-node CPU cost of validating releases and maintaining 
transparency release log

‣ The average values for six Debian packages over two years
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Evaluation
1. Cothority-node CPU cost of validating releases and maintaining release log

57

3 15 127

Number of nodes

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 s

p
e
n
t
 o

n
 e

a
c
h
 n

o
d
e
 p

e
r
 p

a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Cothority

⚙



Evaluation
1. Cothority-node CPU cost of validating releases and maintaining release log

58

3 15 127

Number of nodes

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 s

p
e
n
t
 o

n
 e

a
c
h
 n

o
d
e
 p

e
r
 p

a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

10$/month server is sufficient to validate and 
maintain the log of Debian-security repository

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Cothority

⚙



Evaluation Methodology
What is the cost effect of CHAINIAC on cothority nodes and on clients?


• Cothority-node CPU cost of validating releases and maintaining transparency release log

‣ The average values of six required Debian packages


• CPU cost of reproducing packages on cothority nodes

‣ From 1.5 to 30 minutes to reproduce a package


• Skipchain effect on communication cost

‣ Reducing the cost by the factor of 30 on 1.5 million update-requests from the PyPI repository


• CPU and bandwidth cost of securing a multi-package distribution

‣ ~20 sec to create a snapshot of >50k-packages Debian repository
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Conclusion
• CHAINIAC decentralizes each step of the software-update process to 

increase trustworthiness and to eliminate single points of failure


• Skipchain structure for efficient logging and secure key evolution;              
See https://bford.github.io/2017/08/01/skipchain/ for more applications


• Verified builds as an improvement over reproducible builds


• Role-based architecture, multi-package Chainiac and more are in the paper
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