
CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds

1Kirill Nikitin, 1Eleftherios Kokoris-Kogias, 1Philipp Jovanovic, 1Linus Gasser,

1Nicolas Gailly, 2Ismail Khoffi, 3Justin Cappos, 1Bryan Ford
1École polytechnique fédérale de Lausanne (EPFL)

2University of Bonn

3New York University

Software Updates

2

 Hilary Mason's Twitter A program tape for the 1944 Harvard Mark I,

one of the first digital computers. Wikipedia.

https://twitter.com/hmason/status/520367337925390337
https://en.wikipedia.org/wiki/Patch_(computing)

• Softwares updates are used to patch disclosed vulnerabilities, add new
features, and improve security posture

• If you do not update your system, things can go bad…

3

The Sun

Forbes

The Verge

Software Updates

• But even if you do update your system regularly, things can go wrong too…

• Software-update systems are a lucrative attack target due to their
centralized design and potential impact on users

4

Software Updates

How can we make software-update
systems more secure and transparent?

Software Release Pipeline

5

Development/Review – Building release binaries – Sign-off – Release distribution

</CODE>

Developers

Distribution
center

Users

Software Release Pipeline

6

⚙ ⚙

Development/Review – Building release binaries – Sign-off – Release distribution

</CODE>

Build server

Developers

Users

Distribution
center

Software Release Pipeline

7

Development/Review – Building release binaries – Sign-off – Release distribution

⚙ ⚙

</CODE>

Build server

Developers

Users

Distribution
center

Software Release Pipeline

8

Development/Review – Building release binaries – Sign-off – Release distribution

</CODE>

Build server

Developers

Users

Distribution
center

Challenges

999

</CODE>

1. Make software-update process resilient to partial key compromise
Build server

Developers

Users

Distribution
center

Challenges

101010

</CODE>

1. Make software-update process resilient to partial key compromise
Build server

Developers

Users

Distribution
center

Challenges

11

1. Make software-update process resilient to partial key compromise

1111

</CODE>

Build server

Developers

Users

Distribution
center

Challenges

121212
Talos report on

Petya/NotPetya attacks
Mashable

1. Make software-update process resilient to partial key compromise

Kaspersky Securelist

Challenges

13

2. Prevent malicious substitution of a release binary during building process

1313

</CODE>

Build server

Developers

Users

Distribution
center

Challenges

14

2. Prevent malicious substitution of a release binary during a build process

1414

⚙ ⚙

</CODE>

Build server

Developers

Users

Distribution
center

Challenges

15

2. Prevent malicious substitution of a release binary during a build process

1515

</CODE>

Build server

Developers

Users

Distribution
center

Over 90% of the source packages
included in Debian 9 will build bit-
for-bit identical binary packages

16

Challenges
2. Prevent malicious substitution of a release binary during a build process

17

Challenges

How many of you have reproducibly
built software binaries for personal use?

Building the Tor Browser bundle

takes 32 hours on a modern laptop

18

Challenges
2. Prevent malicious substitution of a release binary during a build process

Closed-source software?

Challenges

19

3. Protect users from targeted attacks by coerced or bribed developers

1919

Build server

Developers

Users

Distribution
center

Challenges

20

3. Protect users from targeted attacks by coerced or bribed developers

2020

Build server

Developers

Users

Distribution
center

Challenges

21

3. Protect users from targeted attacks by coerced or bribed developers

2121

</CODE>

</CODE’>

⚙ ⚙

Build server

Developers

Users

Distribution
center

Challenges

22

3. Protect users from targeted attacks by coerced or bribed developers

2222

</CODE>

</CODE’>

Build server

Developers

Users

Distribution
center

Challenges

23

3. Protect users from targeted attacks by coerced or bribed developers

2323

</CODE>

</CODE’>

Build server

Developers

Users

Distribution
center

Challenges

24

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise

242424

Build
server

Developers

Users

Distribution
center

Challenges

25252525

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise

Developers

Users

Distribution
center

Build
server

Challenges

26262626

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise

Developers

Users

Distribution
center

Build
server

Challenges

27272727

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise

Developers

Users

Distribution
center

Build
server

Design of CHAINIAC

28

Roadmap to CHAINIAC

29

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Decentralized Release-Approval

30

Policy

1. Make software-update process resilient to partial key compromise
Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

31

Policy

1. Make software-update process resilient to partial key compromise

Decentralized Release-Approval

Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

32

Policy

Release
<source code>

Release
<binary>

⚙

Decentralized Release-Approval
1. Make software-update process resilient to partial key compromise

Distribution center
Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

33

Policy

Release
<source code>

Developers’
signatures

Release
<binary>

⚙

Decentralized Release-Approval
1. Make software-update process resilient to partial key compromise

Distribution center
Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

34

Policy
Developers’
signatures

Release
<binary>

Decentralized Release-Approval
1. Make software-update process resilient to partial key compromise

Distribution center
Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

35

Policy

Developers’
signatures

Release
<binary>

Decentralized Release-Approval
1. Make software-update process resilient to partial key compromise

Distribution center
Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Background
• Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoSi

36

1

record

2

record

3

record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

References
• Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp

Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
Keeping Authorities “Honest or Bust” with Decentralized Witness
Cosigning. In 37th IEEE Symposium on Security and Privacy, May 2016.

• Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. In Proceedings of the 25th
USENIX Conference on Security Symposium, 2016.

https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf

Verified Builds

37

Policy

Developers’
signatures

Release Tree
<source code>

<binaries>

Cothority

2. Prevent malicious substitution of a release binary during building process
Distribution

centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

38

Policy

Developers’
signatures

Release Tree
<source code>

<binaries> ⚙⚙

2. Prevent malicious substitution of a release binary during building process

Verified Builds

⚙

Cothority

Distribution
centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

39

Policy

Co-signature

Release Tree
<source code>

<binaries>⚙⚙

2. Prevent malicious substitution of a release binary during building process

Verified Builds

⚙

Cothority

Distribution
centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

40

Policy

Co-signature

Release Tree
<source code>

<binaries>
⚙⚙

2. Prevent malicious substitution of a release binary during building process

Verified Builds

⚙

Cothority

Distribution
centerDevelopers

User

Download &

Verify

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

41

Release Policy File
- List of individual
developer public keys

- Signing threshold

- Cothority public key

- Supported platforms for
verified builds

- …

Verified Builds

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Anti-equivocation Measures
3. Protect users from targeted attacks by coerced or bribed developers

42

Policy

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature
Developers’
signatures

Release Tree
<source code>

<binaries>
<previous head>

⚙

Transparency Release Log

Cothority

Distribution
centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

43

Policy

⚙⚙

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

3. Protect users from targeted attacks by coerced or bribed developers

Anti-equivocation Measures

Transparency Release Log

Cothority

Distribution
centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

44

Policy

⚙⚙ Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

3. Protect users from targeted attacks by coerced or bribed developers

Anti-equivocation Measures

Transparency Release Log

Cothority

Distribution
centerDevelopers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Evolution of Developer Keys
4. Enable developers to securely rotate their signing keys

45

⚙⚙

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Developers’
signatures

Release Tree
<source code>

<binaries>
<previous head>

⚙

Cothority

Distribution
centerDevelopers

User

Policy

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Evolution of Developer Keys

46

⚙⚙

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Developers’
signatures

Release Tree
…

⚙

Cothority

Distribution
centerDevelopers

User

Policy
dev keys

4. Enable developers to securely rotate their signing keys

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Evolution of Developer Keys

47

⚙⚙

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

Cothority

Distribution
centerDevelopers

User

4. Enable developers to securely rotate their signing keys

Developers’
signatures

Release Tree
…

Policy
dev keys

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Evolution of Developer Keys

48

⚙⚙

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

Cothority

Distribution
centerDevelopers

User

4. Enable developers to securely rotate their signing keys

Developers’
signatures

Release Tree
…

Policy
dev keys

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

49

⚙⚙

Cothority
key config I

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

Evolution of Cothority Configuration

Cothority

Distribution
centerDevelopers

User

4. Enable cothority to securely rotate its collective key

Developers’
signatures

Release Tree
…

Policy
co-config

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

50

⚙⚙

Cothority
key config I

Cothority
key config II

Release 4

Co-signature

Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

⚙

Evolution of Cothority Configuration

Cothority

Distribution
centerDevelopers

User

4. Enable cothority to securely rotate its collective key

Developers’
signatures

Release Tree
…

Policy
co-config

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Skipchains

Skipchains
• Novel data structure: blockchain + skip lists

• Blocks have multi-hop two-way links:

‣ Backward links - hashes of past blocks

‣ Forward links - (collective) signatures

• Secure and efficient traversal of arbitrary long timelines

52

Skipchains

53

Cothority
configuration

Skipblock Backward link (hash) Forward link (co-signature)

Implementation and Evaluation

Implementation
• CHAINIAC is implemented in Go

‣ Using the DEDIS Kyber crypto library and Onet networking framework

‣ Available open-source at https://github.com/dedis/paper_chainiac

55

https://github.com/dedis/paper_chainiac

Evaluation Methodology
What is the cost effect of CHAINIAC on cothority nodes and on clients?

• Cothority-node CPU cost of validating releases and maintaining
transparency release log

‣ The average values for six Debian packages over two years

56

Evaluation
1. Cothority-node CPU cost of validating releases and maintaining release log

57

3 15 127

Number of nodes

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 s

p
e
n
t
 o

n
 e

a
c
h
 n

o
d
e
 p

e
r
 p

a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Cothority

⚙

Evaluation
1. Cothority-node CPU cost of validating releases and maintaining release log

58

3 15 127

Number of nodes

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 s

p
e
n
t
 o

n
 e

a
c
h
 n

o
d
e
 p

e
r
 p

a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

10$/month server is sufficient to validate and
maintain the log of Debian-security repository

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Cothority

⚙

Evaluation Methodology
What is the cost effect of CHAINIAC on cothority nodes and on clients?

• Cothority-node CPU cost of validating releases and maintaining transparency release log

‣ The average values of six required Debian packages

• CPU cost of reproducing packages on cothority nodes

‣ From 1.5 to 30 minutes to reproduce a package

• Skipchain effect on communication cost

‣ Reducing the cost by the factor of 30 on 1.5 million update-requests from the PyPI repository

• CPU and bandwidth cost of securing a multi-package distribution

‣ ~20 sec to create a snapshot of >50k-packages Debian repository

59

Conclusion
• CHAINIAC decentralizes each step of the software-update process to

increase trustworthiness and to eliminate single points of failure

• Skipchain structure for efficient logging and secure key evolution;
See https://bford.github.io/2017/08/01/skipchain/ for more applications

• Verified builds as an improvement over reproducible builds

• Role-based architecture, multi-package Chainiac and more are in the paper

60

Kirill Nikitin

kirill.nikitin@epfl.ch

@nikir1ll

https://bford.github.io/2017/08/01/skipchain/

