CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds

'Kirill Nikitin, 'Eleftherios Kokoris-Kogias, 'Philipp Jovanovic, 'Linus Gasser,
'Nicolas Gailly, “lsmail Khoffi, >Justin Cappos, 'Bryan Ford

'Ecole polytechnique fédérale de Lausanne (EPFL)
2University of Bonn
SNew York University

Software Updates

The “Patch”

Small corrections to the programmed sequence could be done

by patching over portions of the paper tape and re-punching the
holes in that section.

Image courtesy of the Smithsonian Archives Center.

e Meson's “Tlie: A program tape for the 1944 Harvard Mark |,
i one of the first digital computers. Wikipedia.

https://twitter.com/hmason/status/520367337925390337
https://en.wikipedia.org/wiki/Patch_(computing)

Software Updates

Softwares updates are used to patch disclosed vulnerabilities, add new
features, and improve security posture

e |f you do not update your system, things can go bad...

What is Wannacry
ransomware? Malware used to cripple . .
> PP Australian police blame WannaCry for
NHS in 2017 cyber attack
el | Forbes sp0|I|ng 8 000 traffic cam tickets

More than 200,000 victims in around 150 countries have been

infected by malicious software akes | Ju 017, 5:13pm EDT
By Gemma Mullin and Emma Lake Forbes g Cybel‘Security |

. JUN 22, 2017 @ 05:00 AM 7,003 @ 12 Stocks to Buy Now The Verge
The Sun Cyber Attack At Honda Stops Production After
WannaCry Worm Strikes

- Peter Lyon,

FULL BIO v

Software Updates

 But even if you do update your system regularly, things can go wrong too...

e Software-update systems are a lucrative attack target due to their
centralized design and potential impact on users

How can we make software-update
systems more secure and transparent?

Software Release Pipeline

Development/Review — Building release binaries — Sign-off — Release distribution

Distribution

B¢
= center
o=

Developers

s

[T
V

s ~ 3 </con:

I

.
.
.
.

Users

Software Release Pipeline

Development/Review — Building release binaries — Sign-off — Release distribution

Build server

Distribution

B¢
= center
o=

Developers

/>

.
.
.
.

Users

Software Release Pipeline

Development/Review — Building release binaries — Sign-off — Release distribution

Build server

Distribution

B¢
= center
o=

Developers

Software Release Pipeline

Development/Review — Building release binaries — Sign-off — Release distribution

Build server

Developers E@

L o b [_e </CODE < /@
= l/ N
¥
E

Distribution
center

[T
V

.
.
.
.

Users

Challenges

1. Make software-update process resilient to partial key compromise

Build server
Distribution

=
= center
Developers @ OB

s

s

[T
V

:i </CODE
s

Users

Challenges

1. Make software-update process resilient to partial key compromise

Build server
Distribution

=
= center
Developers @ OB

s

s

[T
V

:i </CODE
s

Users

Challenges

1. Make software-update process resilient to partial key compromise
Build server

B Distribution
= center
Developers @ OB

</
&

s

[T
V

:i </CODE
s

/

11

APRIL 14, 2017

01.175-10.01.176 version of MeDoc is released with a backdoor.

MAY 15, 2017
01.180-10.01.181 version of MeDoc
is released with a backdoor.

JUNE 22, 2017.
01.188-10.01.189 version of MeDoc is released with a backdoor

ROINIE Z 71 m by 2100710

8:59:14 UTC
Malicious actor used stolen credentials and “su"”
to obtain root privileges on the update server.

| BETWEEN 9:11:59 UTC AND 9:14:58 UTC

The actor modifies the web server configuration to proxy to an OVH server.

9:14:58 UTLC
Logs confirm proxied traffic to OVH.

12:3 1512 UTE
The last confirmed proxy connection to OVH is observed.
This marks the end of the active infection period.

12:33:00 UTC
The original server configuration is restored.

Talos report on
Petya/NotPetya attacks

Challenges

1. Make software-update process resilient to partial key compromise

‘ XMANAGER
[Nl T | B)) [Chan
{ Y] / l’ M [M / Dl

Kaspersky Securelist

Flame Malware Statistics

) A Current
4 ... |IPaddresses
for Command and Control = B hosting C&C

)) Different registation Percent of traffic from top countries
£ 4. services used Lebanon and Iran

: o

65"

L) COUNTRIES INFECTED
Mashable
12

DigiNotar

Internet Trust Services

COMODO

SSLCERTIFICATE

fedoro?

Q redhat

Challenges

2. Prevent malicious substitution of a release binary during building process

Build r
B Distribution
= center
Developers @ OB

'}
:i :i </CODE
)

[T
V

Users

13

Challenges

2. Prevent malicious substitution of a release binary during a build process

Build r
B Distribution
B center
Developers @ OB
O

14

Challenges

2. Prevent malicious substitution of a release binary during a build process

Build r
B Distribution
= center
Developers @ OB

s
s

3 </cope> VA

/

L]

s

15

Challenges

2. Prevent malicious substitution of a release binary during a build process

reproducible-builds

debian

Over 90% of the source packages
included in Debian 9 will build bit-
for-bit identical binary packages

Provide a verifiable path from source code to binary.

16

Challenges

How many of you have reproducibly
built software binaries for personal use?

Challenges

2. Prevent malicious substitution of a release binary during a build process

Closed-source software?

Building the Tor Browser bundle
takes 32 hours on a modern laptop

18

Challenges

3. Protect users from targeted attacks by coerced or bribed developers

Build server
Distribution

=
= center
Developers @ OB

s

s

Users

19

Challenges

3. Protect users from targeted attacks by coerced or bribed developers
Build server

Distribution

=
= center
Developers @ OB

L 3

L

v

Users

20

Challenges

3. Protect users from targeted attacks by coerced or bribed developers

Build server
Distribution

B¢
= center
o=

Developers

VAN
~—
N

0

/N
™~
30

Users

21

Challenges

3. Protect users from targeted attacks by coerced or bribed developers

Build server
Distribution

B¢
= center
o=

Developers

/2

_g%

</

_g?z

7
@)

Users

22

Challenges

3. Protect users from targeted attacks by coerced or bribed developers
Build server

Distribution
center

Developers

o=

Users
23

Challenges

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise Distribution

Build =i

server = center
Developers E@ OB
)
e~ L&
s

Users

24

Challenges

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise Distribution

Build =
server B center
Developers @ OB

Users

25

Challenges

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise Distribution

Build =
server B center
Developers @ OB

Users

20

Challenges

4. Enable developers to securely rotate their signing keys in case of renewal
or compromise Distribution

Build =
server B center
Developers @ OB

Users

27

Design of CHAINIAC

Roadmap to CHAINIAC

Decentralized
Release Approval

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Developers

)

::.f//

(O

Decentralized

30

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Developers

)
LS e
3 polcy
'y

Decentralized Verified Builds

31

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Distribution center
Developers

! o

| O (o -0
- /“,d

Release { Release

<source code> <binary>

:.". & Policy
Yy

Decentralized Verified Builds

32

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Distribution center
Developers

‘.
$0¢
= Release { Release
N .
<source code>| ~ <binary>
N
Developers’
signatures Policy

Decentralized Verified Builds

33

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Distribution center
Developers

L8 N
an o
L8
A “(o Release
<binary> :
® Developers’
e (0 signatures Policy

'y

Decentralized Verified Builds

34

Decentralized Release-Approval

1. Make software-update process resilient to partial key compromise

Distribution center
Developers

=i
2 o
I:iz{o User
:.0‘- O Policy

Release
A (O <binary>
Developers’
signatures

Decentralized Verified Builds

39

Background

 Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoS;i

Authoritative statements: e.g. log records

1 | record - 2 | record <----3 1 record
S <

\\ // 4

\ /7

N\ Y4
N\ /

each statement collectively

signed by both authority

: Authority
and all or most witnesses

Witness
Cosigners

References

e Ewa Syta, lulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp
Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
Keeping Authorities “Honest or Bust” with Decentralized Witness
Cosigning. In 37th IEEE Symposium on Security and Privacy, May 2016.

e Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. In Proceedings of the 25th
USENIX Conference on Security Symposium, 2016.

36

https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.ieee-security.org/TC/SP2016/papers/0824a526.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf

Verified Builds

2. Prevent malicious substitution of a release binary during building process
B=A Distribution

center

Developers

_ =
:i Cothority OB

3 B

<source code>

<binaries>
: Developers’

O signatures

- FA
‘ O :

ma ° Policy

User

e 21zed Builds Key Evolution
37 Release Approval

Verified Builds

2. Prevent malicious substitution of a release binary during building process
B=A Distribution

center

Developers

_ =
:i Cothority OB

Y —

<source code> \QE
"y

<binaries>

93 "
’l
Developers’
:i (O signatures 2,
EA /=Y
‘ O :
ma ° Policy

User

. 12ed Builds Key Evolution
38 Release Approval

Verified Builds

2. Prevent malicious substitution of a release binary during building process
B0 Distribution

center

Developers

=
:é' Cothority OB

iy B N

X <source code>
e

<binaries>

K
. Co-signature P
:i (O KEA <« -‘% - E@ Hﬁ?}
;:‘(O Policy

Decentralized . .
39 Release Approval

Verified Builds

2. Prevent malicious substitution of a release binary during building process

Developers BH Distribution
P P center
: - o=
; Cothority
r x Release Tree
D <source code>
[‘(O A <binaries>
w 0
'Y Co-signature %3}

’l
| o & E; 82 E; Download &
K j v Verify

I:i (0 Policy User
A

B 217ed Builds Key Evolution
40 Release Approval

Verified Builds

Release Policy File

— L1st of i1individual
developer public keys

— Signing threshold
— Cothority public key

— Supported platforms for
verlified builds

Decentralized

Release Approval Verified Builds

41

Anti-equivocation Measures

3. Protect users from targeted attacks by coerced or bribed developers

Distribution TIIED
Developers center _ =

| .
‘ o Cothority
| O (0 Release Tree EA
[<source code> \ ‘
o " ® ok
x h

<binaries> Release 1 | Release 2 | Release 3
<previous head>
Co-signature Co-signature Co-signature
P s = A
s @ s

| ‘l Developers’ E & E
signatures € ---->
ma E A @ Transparency Release Log
D Policy
m ° ? User
Decentralized : : : : : .
/5 Releaste Approval ’fled Builds Anti-equivocation Key Evolution

Anti-equivocation Measures

3. Protect users from targeted attacks by coerced or bribed developers

Distribution TIIED
Developers center _ =

o=
Cothority

” &

Release 1 | Release 2 | Release 3

E Co-signat %% Co-S|gnatur§:A% Co-mgnaturglég
A Transparency Release Log

Policy
? User
Release 4 :

Co-signatur%
Anti-equivocation Ke

Decentralized _ :
Release Approval fled IIIIII
43

Anti-equivocation Measures

3. Protect users from targeted attacks by coerced or bribed developers

Distribution TIIED
Developers center _ =

o=
Cothority

” &

Release 1 | Release 2 | Release 3 | Release 4

E Co-signat %% Co-S|gnatur§:A% Co-mgnaturglég
A Transparency Release Log
Policy l

? User

Decentralized _ :
44 Release Approval ’led BBBBBB

Co-signature

S

Evolution of Developer Keys

4. Enable developers to securely rotate their signing keys
Distribution %

Developers center OB

;:. Cothority
| O (0 Release Tree
[<source code> | |
<binaries> o " % o
<previous head> x’ }

O Developers £ Release 1 Release 2 Release 3 Release 4
e (0 signatures e € e «— «— «—
\ J Co-signaturce%%ﬁkg Co-signatur%% Co-signatur%é} Co-signatur%%
1 Policy
;- &

45

Evolution of Developer Keys

4. Enable developers to securely rotate their signing keys
Distribution %

Developers center OB
O .
:; Cothority
Release Tree
e = /N
Policy % % &
dev keys x .
| @ ?g\;,re];p::, . Release 1 Release 2 Release 3 Release 4
Ignatu <“----> = — —
al (O \ A Aj Co-signature Co-signature Co-signature Co-signaturei,;é;g

2N

2N

ol

'y

46

Evolution of Developer Keys

4. Enable developers to securely rotate their signing keys
Distribution %

Developers center OB
O .
:; Cothority
Release Tree
e = /N
Policy % % &
dev keys x .
| @ ?g\;,re];p::, . Release 1 Release 2 Release 3 Release 4
Ignatu <“----> = — —
[f \ A Aj Co-signature Co-signature Co-signature Co-signaturei,;é;g

2N

2N

ol

Yy

47

Evolution of Developer Keys

4. Enable developers to securely rotate their signing keys
Distribution %

Developers center OB

> Cothority

o N % ok
/‘,¢' §
X A

O O Release 1 Release 2 Release 3 Release 4
Y (0 e € ----P e — G ¢
\ J Co-signaturce%%ﬁkg Co-signatur%% Co-signatur%é} Co-signatur%%
Release Tree
Policy
dev keys
Developers’
signatures

48

Evolution of Cothority Configuration

4. Enable cothority to securely rotate its collective key
Distribution St

=S¢
Developers center OB

O .
:; Cothority
a I Cothority
® Release Tree key config |
< A AN
o X L
'y 4

Policy / A

co-config \

O Developers & | |Release1| \ |Release 2 Release 3 Release 4
Y (O signatures e €---->» e \ 4——\ B —
4
\ J Co-mgnature{g:ég Co-S|gnatur%§ Co-&gnaturz,hé;% Co-S|gnature§§§
‘
;- &

49

Evolution of Cothority Configuration

4. Enable cothority to securely rotate its collective key
Distribution ﬂ

Developers center OB

O .
; Cothority % %
f Cothority Cothority
Release Tree E key config | key config Il
i \

/ \ /
\
Policy ,/ //
co-config / \ | \
\ \
; ' \ l .

Developers | |Release1| Release 2 ' |Release 3| -+ |Release 4
signatures \ A~ < AR

4 Co-signature \Co-si nature ACo-si nature \lC -signatur

— — — —

50

Skipchains

Skipchains

 Novel data structure: blockchain + skip lists
* Blocks have multi-hop two-way links:

» Backward links - hashes of past blocks

» Forward links - (collective) signatures

* Secure and efficient traversal of arbitrary long timelines

52

Skipchains
x:}«, @ @ @ @ coi;;huor:gon

Skipblock <& Backward link (hash) =— Forward link (co-signature)

53

Implementation and Evaluation

Implementation

« CHAINIAC is implemented in Go
> Using the DEDIS Kyber crypto library and Onet networking framework

> Available open-source at https://github.com/dedis/paper_chainiac

50

https://github.com/dedis/paper_chainiac

Evaluation Methodology

What is the cost effect of CHAINIAC on cothority nodes and on clients?

» Cothority-node CPU cost of validating releases and maintaining
transparency release log

> The average values for six Debian packages over two years

56

Evaluation

Cothority

a EA)

Release 1

Release 2
h

1’ V‘@
k?ﬁ:s > E@

Co-signature

Release 3
]

Co-signature

Co-signature

1. Cothority-node CPU cost of validating releases and maintaining release log

Time spent on each node per package (sec)

-
o
Ul

»—x< Wall-total over all nodes
11 CPU / Wall
[Dev-signature verification

]

Creating timestamp
Collective signing
Reproducible build

15

127

Number of nodes

57

Evaluation

Co-signature Co-signature

1. Cothority-node CPU cost of validating releases and maintaining release log

10%/month server is sufficient to validate and

maintain the log of Debian-security repository

58

Evaluation Methodology

What is the cost effect of CHAINIAC on cothority nodes and on clients?

* Cothority-node CPU cost of validating releases and maintaining transparency release log

> The average values of six required Debian packages

* CPU cost of reproducing packages on cothority nodes

> From 1.5 to 30 minutes to reproduce a package

« Skipchain effect on communication cost

> Reducing the cost by the factor of 30 on 1.5 million update-requests from the PyPI repository

 CPU and bandwidth cost of securing a multi-package distribution

» ~20 sec to create a snapshot of >50k-packages Debian repository

59

Conclusion

CHAINIAC decentralizes each step of the software-update process to
iIncrease trustworthiness and to eliminate single points of failure

Skipchain structure for efficient logging and secure key evolution;
See https://bford.qithub.io/2017/08/01/skipchain/ for more applications

Verified builds as an improvement over reproducible builds

Role-based architecture, multi-package Chainiac and more are in the paper

Kirill Nikitin
Kirill.nikitin@epfl.ch
@nikirill

60

https://bford.github.io/2017/08/01/skipchain/

