
Qapla: Policy compliance for
database-backed systems

Aastha Mehta1, Eslam Elnikety1, Katura Harvey1,2,
Deepak Garg1, Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS)
2University Of Maryland, College Park

Healthcare systems
§ patient records

Personnel management systems
§ salaries, ages

Conference management systems
§ submissions, reviews

Challenge: specifying and enforcing
complex data access policies is non-trivial

Application

DBMS

Users

Web applications store confidential data in DBMS

confidential data

Requirement: applications must comply
with data access policies

Application architecture

Healthcare systems
§ patient records

Personnel management systems
§ salaries, ages

Conference management systems
§ submissions, reviews

Challenge: specifying and enforcing
complex data access policies is non-trivial

Application

DBMS

Users

Web applications store confidential data in DBMS

confidential data

Requirement: applications must comply
with data access policies

this talk: HotCRP

Application architecture

review.php:
loadRows();

loadRows() {
$getinfo[“paperId”] = $_REQUEST[“paperId”];
if ($Me->isPC && $Conf->timePCReviewPreferences() || $Me->privChair)

$getinfo[“reviewerPreference”] = true;
$prow = $Conf->paperRow($getinfo, $Me);
$rrows = $Conf->reviewRow($getinfo, $prow);
if (!can_view_paper($prow))

return null;
if (!$Me->can_view_review($prow, $rrow) &&

!$Me->privChair)
return null;

return $prow;
}

if (!$Me->can_view_review($prow))
report_error();

echo “<html>$prow</html>”;

Example from HotCRP (simplified for illustration)
Current approach: enforcing policy in application code
Current application logic

checks based on user roles,
conference phase

fetch reviews for paperId

checks based on user roles,
conflicts, conference phase

load reviews

more checks ...

Application code

Policy checks inlined throughout application code

§ Must update checks in several code paths as application or
policies evolve

§ Easy to miss or implement incorrect checks

get_review($paper, $user) {
$result = $db->query("SELECT Reviews.* FROM Reviews WHERE

Review.paperId=".$paper->paperId);

$rrows = $result->fetchObject();

foreach ($rrows as $row) {
if (can_view_review($row, $user))

show($row->review);
}

}

get_comments($reviewId, $user) {
$result = $db->query("SELECT Reviews.* FROM Reviews

WHERE Review.reviewId=".$reviewId);
$row = $result->fetchRow();
if (!can_view_review($row, $user))

return "";

$result = $db->query("SELECT * FROM Comments WHERE reviewId=".$reviewId);
$rows = $result->fetchRows();
foreach($rrows as $row) {

if (can_view_comment($row, $user)) {
comments[] = $row;

}
}
return $comments;

}

get_pc_members($paper, $user) {
$result = $db->query("SELECT name FROM Contacts
WHERE roles=PC|CHAIR);

$rrows = $result->fetchObject();

foreach ($rrows as $row) {
if (can_view_contact($row, $user))

show($row->name);
}

}

HotCRP v2.58 23.Mar.2013
More information leak plugging: explicit search for review fields that should be
hidden from authors, and review rounds. Reported by John Heidemann.

HotCRP v2.59 14.Jun.2013
Bug fix: "Monitor external reviews" works. Reported by Peter Sewell.
Information leak fixes: During response periods, don’t notify authors of
changes in PC-only fields. Don’t allow searches on review rounds for conflicted
papers. Don’t show accept status via "Accepted papers" searches. Reported by
Nickolai Zeldovich and Jeff Mogul.

Source:	http://read.seas.harvard.edu/~kohler/hotcrp/news.html

Examples of data leaks in HotCRP

Limitations of existing approaches

Application

DBMS

Users

Enforcing policy in application code:
Bugs in application code may lead to policy
violations and cause data leaks

Using DBMS access control support:
Cannot support all policies without changes
to DB schema or application queries

Qapla

Our approach

Goals:
§ Separate policy compliance from

application code and DBMS

§ Support complex, fine-grained data
access policies

§ Add only moderate performance
overheads for end users

Application

DBMS

Users

Outline

§ Policy compliance today
- Policy checks in application
- DBMS access control

§ Qapla
- Design
- Policy specification
- Policy enforcement

§ Evaluation

Qapla: compliance independent of application code and DBMS

Application

query

DBMS

User

Application
data tables

request response

query
result

Qapla: compliance independent of application code and DBMS
Declarative policies associated with
the DB schema, stored in the DBMS

1

Application

query

DBMS

User

Application
data tables

Qapla
policies

1

request response

query
result

Qapla: compliance independent of application code and DBMS

Policies enforced by a reference
monitor integrated with a DB adapter

2

Declarative policies associated with
the DB schema, stored in the DBMS

1

Application

query

DBMS

User

Application
data tables

Qapla
policies

1

request response

Qapla reference monitor
2

query
result

DB adapter

Qapla: compliance independent of application code and DBMS

Policies enforced by a reference
monitor integrated with a DB adapter

2

Declarative policies associated with
the DB schema, stored in the DBMS

1

Application

query

DBMS

User

Application
data tables

Qapla
policies

1

request response

Reference monitor rewrites query with
applicable policies

3

policies
3

Qapla reference monitor
2

rewritten
query

query
result

DB adapter

Qapla: compliance independent of application code and DBMS

Policies enforced by a reference
monitor integrated with a DB adapter

2

Declarative policies associated with
the DB schema, stored in the DBMS

1

Application

query

DBMS

User

Application
data tables

Qapla
policies

1

request response

Reference monitor rewrites query with
applicable policies

3

Forwards compliant query results to
the application

4

policies
3

Qapla reference monitor
2

rewritten
query

compliant
query
result

4

DB adapter

Qapla: compliance independent of application code and DBMS

Policies enforced by a reference
monitor integrated with a DB adapter

2

Declarative policies associated with
the DB schema, stored in the DBMS

1

Application

query

DBMS

User

Application
data tables

Qapla
policies

1

request response

Reference monitor rewrites query with
applicable policies

3

Forwards compliant query results to
the application

4

Compliant
application queries same results

Non-compliant
queries fewer results

policies
3

Qapla reference monitor
2

rewritten
query

compliant
query
result

4

DB adapter

Threat model

Application

DBMS

User

Application
data tables

Qapla
policies

Qapla reference monitor

Our goal: prevent inadvertent data leaks
due to application bugs

tr
us

te
d

un
tr

us
te

d

admin
auth

DB adapter

Threat model

Application

DBMS

User

Application
data tables

Qapla
policies

Qapla reference monitor

Our goal: prevent inadvertent data leaks
due to application bugs

tr
us

te
d

un
tr

us
te

d

admin
auth

! application does not circumvent the
reference monitor

§ can use software fault isolation,
process or address space isolation

! application sends correct user identity
to reference monitor

§ user can directly authenticate with the
reference monitor

Prototype Limitations

DB adapter

col1 JOIN col2

2. link policy (on joins, filters)

4. policies on user defined functions (UDF)

SELECT UDF(col)

Policies on DB queries
1. single column policies

SELECT col

3. policies on aggregate, group by

SELECT COUNT(col)
GROUP BY col

in the paper

Policy on queries that read single column

paperId contactId review

123 9

Authors can see their reviews only after decision notification

paperId author outcome

123 Alice

Reviews Papers

Policy on queries that read single column

paperId contactId review

123 9

Authors can see their reviews only after decision notification

paperId author outcome

123 Alice

Reviews.review :-

Reviews Papers

Policy on queries that read single column

paperId contactId review

123 9

Authors can see their reviews only after decision notification

paperId author outcome

123 Alice

Reviews.review :-
CURRENT_DATE() >= 22-06-2017
AND
EXISTS(SELECT 1 FROM Papers
WHERE paperId = Reviews.paperId
AND author = $user)

/* user is an author of paper with
paperId = Reviews.paperId */

/* date after decision notification */

Reviews Papers

Policy on queries that read single column

paperId contactId review

123 9

Authors can see their reviews only after decision notification

paperId author outcome

123 Alice

Reviews.review :-
CURRENT_DATE() >= 22-06-2017
AND
EXISTS(SELECT 1 FROM Papers
WHERE paperId = Reviews.paperId
AND author = $user)

/* user is an author of paper with
paperId = Reviews.paperId */

cell-level	access	control

/* date after decision notification */

Reviews Papers

column-level	condition

cell-level	condition

Policy on queries that link multiple columns
Authors can see PC names and
reviews independently, but
cannot link them

paperId contactId review

123 9

Reviews

contactId name role

9 Bob PC

Contacts

paperId author outcome

123 Alice

Papers

Policy on queries that link multiple columns
Authors can see PC names and
reviews independently, but
cannot link them

paperId contactId review

123 9

Reviews

contactId name role

9 Bob PC

Contacts{Reviews.review, Reviews.contactId,
Contacts.name, Contacts.contactId} :-

paperId author outcome

123 Alice

Papers

Policy on queries that link multiple columns
Authors can see PC names and
reviews independently, but
cannot link them

paperId contactId review

123 9

Reviews

contactId name role

9 Bob PC

Contacts{Reviews.review, Reviews.contactId,
Contacts.name, Contacts.contactId} :-

NOT EXISTS(SELECT 1 FROM
Papers WHERE author=$user)

paperId author outcome

123 Alice

Papers

author cannot access
these columns together

Policy on queries that link multiple columns
Authors can see PC names and
reviews independently, but
cannot link them

paperId contactId review

123 9

Reviews

contactId name role

9 Bob PC

Contacts{Reviews.review, Reviews.contactId,
Contacts.name, Contacts.contactId} :-

NOT EXISTS(SELECT 1 FROM
Papers WHERE author=$user)

paperId author outcome

123 Alice

Papers

author cannot access
these columns together

all	users	can	see	PC	names	

authors	can	see	their	reviews	
only	after	notification

Policy on aggregate queries

paperId author outcome

accept

123 Alice accept

reject

Papers

authors	can	see	their	outcome	
only	after	notification

Policy on aggregate queries
Anyone can see the number of
submitted and accepted papers
after the decision notification

{Papers.outcome[COUNT, GROUP BY]} :-
CURRENT_DATE() >= 22-06-2017

/* allow COUNT query with
GROUP BY on outcome

only after notification */

paperId author outcome

accept

123 Alice accept

reject

Papers

Summary: Qapla policy specification framework
Qapla policy
set of columns :- SQL WHERE clauses on tables

2. link policy (on joins, filters)

4. policies on UDFs

1. single column policies

3. policies on aggregate, group by

Policy enforcement
col1 col2

T1

Q: SELECT col1 FROM T1

T1’: SELECT * FROM T1
WHERE P1

Qr: SELECT col1 FROM T1’

Policies = {P1}

Policies:
{col1} :- P1
{col2} :- P2
{col1,col2} :- P3

Query on single column
Q: SELECT col1 FROM T1 WHERE

col2 = expr1

Query on multiple columns

Policies = {P3}

T1’: SELECT * FROM T1
WHERE P3

Qr: SELECT col1 FROM T1’ WHERE
col2 = expr1

Policy enforcement
col1 col2

T1 Policies:
{col1} :- P1
{col2} :- P2
{col1,col2} :- P3

Q: SELECT col1 FROM T1 WHERE
col2 = expr1

Query on multiple columns

Policies = {P3}

T1’: SELECT * FROM T1
WHERE P3

Qr: SELECT col1 FROM T1’ WHERE
col2 = expr1

Step1: Identify the policies
applicable to the set of columns
in the query

Step2: Replace each table with
a subquery containing the
applicable polices

Outline

§ Policy compliance today
- Policy checks in application
- DBMS access control

§ Qapla
- Design
- Policy specification
- Policy enforcement

§ Evaluation

Reference monitor implementation

Ported reference monitor to:
PHP Python DjangoWeb frameworks

MySQL
commercial DBMS

DBMSes
HotCRP MPI-SWS job portalApplications

in the paper

MySQL
commercial DBMS

§ ~20K lines of C code (+ MySQL parser library)
§ identifying set of columns, rewriting query with applicable policies
§ API: create and set policies on columns

in the paper

Policy compliance in HotCRP
§ Schema: 22 tables, 215 columns
§ Anonymized data from past conference hosting
§ Implemented 30 policies for a typical configuration
- double blind reviewing
- chair conflict handling
- review process with no rebuttal

§ Application changes
- overly general queries return fewer results with Qapla
- changed ~150 out of ~52K LoC in application (< 0.3%)

End-to-end latency for user actions
Author clicks review URL: an author clicks the URL of paper to view
reviews after notification

PC saves comment: a PC member clicks a button to save comments
on a paper during review phase

Chair sets conflict: Chair assigns conflict for a paper and a PC member

Chair clicks assign button: Chair clicks a button automatic
review assignment

 0

 1

 2

 3

 4

 5

59.7 101.6 93.7 1517.5
83.5 127.0 137.9

6364.5

End-to-end latency for user actions

HotCRP end-user actions

N
or

m
al

iz
ed

 la
te

nc
y Baseline

Qaplaoverhead below user-
perceptible threshold

overhead: 320%

reviewer assignment
is an infrequent task

absolute
latency (ms)

< 45 queries
~3800 queries

 0

 1

 2

 3

 4

 5

59.7 101.6 93.7 1517.5
83.5 127.0 137.9

6364.5

End-to-end latency for user actions

HotCRP end-user actions

N
or

m
al

iz
ed

 la
te

nc
y Baseline

Qaplaoverhead below user-
perceptible threshold

overhead: 320%

reviewer assignment
is an infrequent task

Most of Qapla’s overhead corresponds to execution of rewritten queries

absolute
latency (ms)

< 45 queries
~3800 queries

Summary
DB-backed systems

§ independent of DBMS support for access control
§ independent of application code
§ modest changes to application for functionality
§ moderate overhead for end users

Qapla: an effective policy compliance system

data leaks due to
policy violations

application bugs

Questions?

