
*Secure Communication and Computer Systems Lab
Texas A&M University

Attacking the Brain: Races in
the SDN Control Plane

Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang,
Guofei Gu

SDN Overview

Ø Software-Defined Networking (SDN) is a novel
programmable network paradigm that separates the
control logic from the data plane.

CP CP

CP SDN Controller

App App App

CP

SDN Control Plane – New Achilles' Heel

SDN Controller

App App App
Control Plane Saturation
(CCS’13, DSN’15)
Topology Poisoning
(NDSS’15)
State Manipulation
(In this paper!)

Harmful Race Conditions in the Brain

The network states maintained in the SDN control
plane is subject to harmful race conditions.
Ø Non-adversarial causality: asynchronous network
events and non-determinist schedules.
Ø Adversarial causality: an attacker can intentionally
inject right network events to exploit vulnerabilities --
State Manipulation Attacks

How Does It Look like?

What Can It Cause?

Ø System Crash
Ø Connection Disruption
Ø Service Disruption
Ø Service Chain Interference
Ø Privacy Leakage
Ø …

A Real Vulnerability in LoadBalancer

Internet

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

Floodlight
(LoadBalancer)

Control Plane

Data
Plane

A Real Vulnerability in LoadBalancer

Internet 1

2

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

Floodlight
(LoadBalancer)

Control Plane

Data
Plane

1

2

Client send requests to
public service

Switch issues Packet-In
message to SDN controller

SDN controller select Server
replica and instruct switch
to install flow rules to
translate traffic between
client and server replica

A Real Vulnerability in LoadBalancer

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

Floodlight
(LoadBalancer)

Control Plane

Data
Plane

1

2

Client send requests to
public service

Switch issues Packet-In
message to SDN controller

3 4

SDN controller select Server
replica and instruct switch
to install flow rules to
translate traffic between
client and server replica

A Real Vulnerability in LoadBalancer

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

5

Floodlight
(LoadBalancer)

Control Plane

Data
Plane

1

2

Client send requests to
public service

Switch issues Packet-In
message to SDN controller

3 4

5 The communication
between Client and public
service is successfully set
up

A Real Vulnerability in LoadBalancer

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

5

Floodlight
(LoadBalancer)

Control Plane

Data
Plane

SWITCH
LEAVE

1

2

Client send requests to
public service (10.10.10.10)

Switch issues Packet-In
message to SDN controller
SDN controller select Server
replica and instruct switch
to install flow rules to
translate traffic between
client and server replica

3 4

5 The communication
between Client and public
service is successfully set
up

A Real Vulnerability in LoadBalancer

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

5

Floodlight
(LoadBalancer)Control Plane

Data
Plane

SWITC
HLEAV

E

Research Questions

Ø How to detect harmful race conditions
in the SDN control plane?
Ø How to exploit harmful race conditions
by an external attacker?

Research Questions

Ø How to detect harmful race conditions
in the SDN control plane?
Ø How to exploit harmful race conditions
by an external attacker?

Our Solution:
ConGuard

Ø Key Insight: Harmful race conditions are rooted by two race
operations upon shared network states that are not
commutative, i.e., mutating the scheduling order of them leads
to a different state though the two operations can be well-
synchronized (e.g., by using locks).

Detection of Harmful Race Conditions

Dynamic
Execution

Instrumentation Post-Mortem
Analysis

Execution
Trace Adversarial

State Racing
Races

Execution Trace

Ø We dynamically log a sequence of critical
operations to model the operations of SDN control
plane from instrumented SDN control plane.

Dynamic
Execution

Instrumentation Post-Mortem
Analysis

Execution
Trace Adversarial

State Racing
Races

Critical Operations in Execution Trace

Øread(T,V) : reads variable V in thread T
Øwrite(T,V) : writes variable V in thread T
Øinit(A) : initializes application A
Øterminate(A) : terminates application A
Ødispatch(E) : dispatches event E
Øreceive(H,E) : receives event E by event handler H
Øschedule(TA) : instantiates a singleton task TA
Øend(TA) : terminates a singleton task TA

Ø We develop happens-before relations to model
concurrency semantics of the SDN control plane.
Ø We utilize graph-based approach to locate race
operations.

Dynamic
Execution

Instrumentation Post-Mortem
Analysis

Execution
Trace Adversarial

State Racing
Races

Post-Mortem Analysis

Race Detection

Ø Pre-processing
Ø Prune operations on thread-local or immutable variable
Ø Duplicated operations removal

Ø Graph-based Race Detection Algorithm
Ø Use DAG to model operations

operations nodes happens-before edges

Ø Reachability Check in the graph Race Operations

Ø We instrument control logic to force an erroneous
execution order, e.g., the state update executes
before the state references.

Dynamic
Execution

Instrumentation Post-Mortem
Analysis

Execution
Trace Adversarial

State Racing
Races

Adversarial State Racing

Exploitation of Harmful Race Conditions

Ø Thread Model
Ø No need of compromised SDN controllers,

apps, switches and protocol
Ø Control channel is well protected by SSL/TLS
Ø Compromised hosts/virtual machines
Ø Inject 7 network events, 2 of them

need in-band deployment of SDN
Packet-In
Host Join/Leave
Port Up/Down

Switch Join/Leave

Exploitation of Harmful Race Conditions

Ø Attack Strategies
Ø Repeat ordered
event sequences
<trigger event,
update event>
Ø Feedback Probing
Ø Exploit larger
vulnerable windows

Inject trigger event

Inject update event

Reference State Operation

update State Operation

Handle events/ check state
operation

Vulnerable
Window

Attacker SDN
controller

Probe Attack Result

Evaluation

Ø Implementation of ConGuard
Ø On Floodlight, ONOS and OpenDaylight controllers with 34
apps.
Ø Input Generator: Mininet & Rest API scripts
Ø Instrumentation & Static Analysis: ASM framework

Ø Totally pinpoint 15 unknown harmful race conditions

Race Detection Result

Controller Version Preprocessing
Reduction

Race
Operations

Floodlight 1.1 96.6% 153

Floodlight 1.2 87.2% 184

OpenDaylight 0.1.7 92.1% 221

ONOS 1.2 98.1% 13

Effectiveness of HB rules

Ø In Floodlight Controller

258 153
HB rules

105 false
alerts

Impact Analysis

Ø All located 15 harmful race conditions with 4 harmful
impacts:

Ø System Crash (4 of them)
Ø Connection Disruption (7 of them)
Ø Service Disruption (13 of them)
Ø Service Chain Interference (7 of them)

Correlation of External Events

* in-band

† REST API

Remote Exploitations

Average trials to get a successful exploitation

Potential Defense Schemes

Ø Safety Check
Ø Ensure consistent state at the reference location

Ø Deterministic Execution Runtime
Ø Guarantee the deterministic execution of state operations

Ø Sanitizing External Network Events
Ø Anomaly detection system to sanitize suspicious state
update events

Conclusion

Ø We report State Manipulation Attacks that target the
SDN control plane.
Ø We design ConGuard framework to pinpoint and
exploit harmful race conditions in the SDN control
plane.
Ø We present an extensive evaluation of ConGuard
that uncovered 15 unknown vulnerabilities (we have
helped developers patch most of them already)

Thanks for attention!
Q&A

