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Spear Phishing

Targeted email that tricks victim into giving attacker privileged capabilities
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Unclassified Network

a By Gerry Smith

Hackers breached an unclassified computer network used by the White House, but did
not appear to have stolen any data, a White House official said Monday.
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Our Focus: Enterprise Credential Spearphishing

“Credentials are king”

- Rob Joyce, Director of NSA’s Tailored Access Operations

* Wealth of access & lower barrier than 0-day malicious attachments

* What about 2FA?
* Cost, usability , incomplete deployment, often still phish-able

e Detection today: user reporting, phish-able 2FA, post-mortem forensics
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Our Work

Practical detection system for an enterprise’s security team

1. Extremely low FP burden (Goal: < minutes per day)

2. Raises bar & detects many attacks, but not silver bullet



Our Work

Worked with the Lawrence Berkeley National Laboratory (LBL)
» US DoE National Lab w/ 5,000 employees

Anonymized datasets:
* SMTP header information (From and RCPT-TO headers)
* URLs in emails
* Network traffic logs
* LDAP logs



Key Challenges

1. Small set of labeled attack data
* < 10 known successful credential spearphishing attacks

2. Base rate

e 372 million emails over 4 years (Mar 2013 — Jan 2017)
* Even detector w/ 99.9% accuracy = 372,000 alerts



Structure-Driven Features



Spearphishing Attack Taxonomy
 Successful spearphishing attacks have two necessary stages:

1. The Lure
* Successful attacks lure/convince victim to perform an action

2. The Exploit

* Successful attacks execute some exploit on behalf of the attacker
* Malware, revealing credentials, wiring money to “corporate partner”
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Hash: SHA1

_AirBears UID 1051850 will be blocked, per the SNS notice
associated with tracking number [SNS #902375].

To avoid being blocked from the Airbears network, you must
go to the link below and login with your Calnet id and password:

http://auth.berkeley.edu/cas/login/?service=https%3A%2F%2Fsecurity.berkeley.edu%2Flogin%2Fcas

The blocking will be suspended if
valid Calnet id and password have been provided no later than 23:59 on
Mar 24.

System and Network Security

Version: GnuPG v2.0.22 (FreeBSD)

iD8JJIid+8923ljsdwWTf6yM0OoJEJOljwenfiOIEIFFXOwefhliuuNSACelLXka
EJUlyJEoe992webRAURX4xbx=
=6Nch
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Modern Credential Spearphishing: The Lure

Hash: SHA1

_AirBears UID 1051850 will be blocked, per the SNS notice
associated with tracking number [SNS #902375].

To avoid being blocked from the Airbears network, you must
go to the link below and login with your Calnet id and password:

http://auth.berkeley.edu/cas/login/?service=https%3A%2F%2F security.berkeley.edu%2Flogin%2Fcas

From: “Berkel ey IT Staff” The blocking will be suspended if

valid Calnet id and password have been provided no later than 23:59 on

<security@berkeley.net> Mar 24.

System and Network Security

----- BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (FreeBSD)

iD8JJIlid+8923ljsdwWTf6yM0OoJEJOIjwenfiOIEIFFXOwefhliuuNSACelL Xka
EJUlyJEoe992webRAURx4xbx=
=6Nch

Lure
1. Attacker sends catchy email under trusted/authoritative identity
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Modern Credential Spearphishing: The Exploit

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

_AirBears UID 1051850 will be blocked, per the SNS notice
associated with tracking number [SNS #902375].

To avoid being blocked from the Airbears network, you must
go to the link below and login with your Calnet id and password:

http://auth.berkeley.edu/cas/login/?service=https%3A%2F%2Fsecurity.berkeley.edu%2Flogin%2Fcas

K/?:Erdz%?met id and passwordiihave been provided no later than 23:59 d Actu a I Desti n ati o n fo r I i n ked text :

System and Network Securi

—_EaiN PaP SIGNATURE— auth.berkeley.netne.net

Version: GnuPG v2.0.22 (Fr.

iD8JJIlid+8923ljsdwWTT6y
EJUlyJEoe992webRAURX
=6Nch

-----END PGP SIGNA

mandrillapp.com/track/click/305639 8l /auth.berkeley.netne.net?|

ey)zljoiSFA3SM1ZvenBSWFRPX094dUozdkpudENM...Zjg3NDALNjNjZjQSN 1wiLFwidXJsX2lkc 1wiOltcimIzN2RiO

Exploit
1. Victim clicks on embedded link
2. Victim arrives at phishing website & submits credentials
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Lure Features: Suspicious Sender Present

* Common lure: impersonate a trusted or authoritative entity

* Four “impersonation” classes - each has own set of lure features
1. Name spoofing attacker
2. Address spoofing attacker
3. Previously unseen attacker
4. Lateral attacker

e This talk: lateral attackers
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Lure Features (Cont.): Suspicious Sender Present

 Lateral spearphishing lure: attacker compromises trusted entity’s account

* Feature intuition: email = suspicious if employee sent it during a suspicious
login session

* Lure features for lateral spearphishing:
* was email sent in a session where sender logged in w/ new IP address?
 # prior logins by the sender from the geolocated city of login IP addr
* # of other employees who’ve also logged in from city of login IP addr
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Exploit Features: Suspicious Action Occurred

* Winnow pool of candidate alerts to:

Emails where recipient clicked on embedded URL (a click-in-email action)

* Exploit features: URL’s Fully-qualified domain (hostname) is suspicious
* # of prior visits to FQDN across all enterprise’s network traffic
* # of days between 15t employee’s visit to FQDN & current email’s arrival
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Using Features for Detection



How do we leverage our features?

 Combine lure + exploit features to get FVs for emails
* How do we use these features for detecting attacks?

Approach 1: Manual rules
* Problems: soundly choosing thresholds & generalizability

Approach 2: Supervised ML
 Problems: tiny # of labeled attacks and base rate
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Limitations of Standard Techniques

Approach 3: Unsupervised learning/anomaly detection
* Clustering/Distance Based: kNN
* Density-based: KDE, GMM
* Many others...

Three common problems:
1. Require hyperparameter tuning
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Classical Anomaly Detection: Limitations

Three thematic problems:

2. Direction-agnostic
(standard dev of +3 just
as anomalous as -3)

Mean
< ‘ ‘ >
0 50 100
Feature:

# prior logins by current employee from
city of new IP addr
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Three thematic problems:
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2. Direction-agnostic

3. Alert if anomalous in
only one dimension

MORE BENIGN



Classical Anomaly Detection: Limitations

Three thematic problems:

1. Parametric and/or
hyperparameter tuning

2. Direction-agonistic

3. Alert if anomalous in only
one dimension

e DAS: simple, new method
that overcomes these 3
problems

MORE BENIGN
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DAS: Directed Anomaly Scoring

1. Security analysts w/ limited time: specify B = alert budget

2. For set of events, assign each event a “suspiciousness” score
3. Rank events by their “suspiciousness”

4. Output the B most suspicious events for security team
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DAS: Directed Anomaly Scoring

* Score(Event X) = # of other events that are as benign as X in every dimension

* j.e., Large score = many other events are more benign than X

MORE BENIGN
23




DAS: Directed Anomaly Scoring

* Score(Event X) = # of other events that are as benign as X in every dimension

MORE BENIGN

24



DAS: Directed Anomaly Scoring
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Detection Results

* Real-time detector on 370 million emails over ~4 years

* Ran detector w/ total budget of 10 alerts/day
* Practical for LBL’s security team (~240 alerts/day typical)

* Detected 17 / 19 spearphishing attacks (89% TP)
» 2 / 17 detected attacks were previously undiscovered

* Best classical anomaly detection: 4/19 attacks for same budget
* Need budget >= 91 alerts/day to detect same # of attacks as DAS
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Results: Cost of False Positives

* 10 alarms / day: How much time does this cost the security team?

* LBL’s security staff manually investigated all our alerts
* 24 alerts / minute (avg rate for one analyst)
* < 15 minutes for 1 analyst to investigate alerts from an entire month

e Subject + URL + “From:” = quick semantic filter

* “Never Lose Your Keys, Wallet, or Purse Again!”
* “Invitation to Speak at Summit for Energy...”
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Conclusion

* Real-time system for detecting credential spearphishing attacks
* TP = 89%: detects known + previously undiscovered attacks
* FP = 0.004%: 10 alerts / day (alerts processed in < minutes per day)

Key ideas

1. Leverage lure + exploit structure of spearphishing to design features

2. DAS: unsupervised, non-parametric technique for anomaly detection
1. Generalizes beyond spearphishing
2. “Needle-in-haystack” problems w/ curated & directional features

grantho@cs.berkeley.edu
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