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Database Backend 

• Web Applications allow users to remotely 

access services 

• Information stored in database 
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Built-in Database Access Controls 
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Some DMBS provide fine-grained access control based 
context of connected user 

4 
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But database user is not the same as application user! 
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Application based Access Controls 

• CLAMP and Nemesis both define per-user 
access control policies on each table 

 

• Most existing work defines access control 
policies using database views 
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Database View 

• Database views restrict a user to a portion of 
the database using a SELECT query 

• “Only allow customers to view their own 
orders” 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = $current_id 



Database View 
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• Existing techniques use views to restrict read/write 
access 

• The same query can also express the write policy: 
“Only allow customers to update their own orders” 

SELECT O.*  

FROM orders O 

WHERE O.cust_id = $current_id 
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What if you can’t map a 

user to authorized rows 

in the table? 



Problem 
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SELECT R.*  

FROM reviews R, orders_products P, orders O 

WHERE O.cust_id = current_id AND 

 O.oid = OP.oid AND 

 OP.product_id = R.product_id AND 

 R.cust_id = $current_id 

• “Customers can only leave reviews for 

items they have purchased”  



Survey of Existing Web Applications 
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Insecure Code 

12 

R. Abela. Infographic: Statistics about the security scans of 396 open source web applications.  
https://www.netsparker.com/s/r/bl/2016_statistics_open_source_web_application_scans.png 



Insecure Code 
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Symantec patches high risk vulnerabilities in endpoint protection. 
http://www.securityweek.com/symantec-patches-high-risk-vulnerabilities-endpoint-protection 



Design Goals 

• Generality: Access control policy can be 
enforced read/write queries 

• Correctness: Current user can only 
view/modify authorized information 

• Architectural Compatibility:  

– Solution works with existing web applications 
without requiring major changes 

– Solution is not database specific 

• Simple: Preliminary knowledge overhead is 
low 
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Proposed Solution 

Client 
HTTP 

Front-end 
App Driver 

Connection 
Pool 

DDBMS 

Database 
Server 

Application Server 

Implement the control in the database driver 
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Solution Outline 

• What is Query Safety? 

• How can Query Safety be enforced? 

• Experiments with proposed methodology 
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Database Policies 

• Two types of policies: 

– Read Policy 

– Write Policy 

• A policy is composed of a set of rules for 

each database table 
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Policy Definitions 

• Customers can only view/modify their own 

orders 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = current_id 

Read/Write Policy 



Policy Definitions 

• Customers can view items available in the 

store 
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SELECT P.*  

FROM products P 

Read Policy 

SELECT P.*  

FROM products P 

WHERE 1=0 

Write Policy 



Policy Definitions 

• Customers can read any review, but only 

leave reviews for items they purchased 
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SELECT R.*  

FROM reviews R 

Read Policy 

Write Policy 
SELECT R.*  

FROM reviews R, orders_products P, orders O 

WHERE  O.cust_id = current_id AND 

 O.oid = OP.oid AND 

 OP.product_id = R.product_id AND 

 R.cust_id = current_id 



Query Safety 

• A safe query is one that allows a user to 

only view/modify authorized tuples in the 

database identified by the security policy 

– A read query is safe if it is read-safe 

– A write query is safe if it is write-safe 
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Read-Safe Query 

• A query is read-safe if the query’s result is 

unchanged when executed on only the 

tables a user is authorized to access 
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Read-Safe Query 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 

Read Policy 

SELECT orders_id  

FROM orders 

WHERE cust_id = 1 

Read-Safe 

SELECT *  

FROM orders 

Not Read-Safe 



Write-Safe Query 

• A query is write-safe if: 

1. The query is read-safe  

2. The query does not modify unauthorized 

tuples 

• The results of the query should not change if the 

query is restricted to modifying tuples in the write 

policy 
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Write-Safe Query 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 

Write Policy 

DELETE FROM orders 

WHERE cust_id = 1 

Write-Safe Queries 

DELETE FROM orders 

Not Write-Safe Queries 

INSERT INTO orders 

AS  SELECT *  

 FROM orders 



Solution Outline 

• What is Query Safety? 

• How can Query Safety be enforced? 

• Experiments with proposed methodology 
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Ensuring Query Safety 
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Read Set Intersection 

• Any query can be transformed to a read-

safe query by adding additional conditions 

to the WHERE clause of any SELECT 

queries 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 

Read Policy 

SELECT * 

FROM orders 

SELECT *  

FROM orders 

WHERE O.cust_id = 1 



Phantom Extraction 

1. Transform the query into a read-safe 

query (Read Set Intersection) 

2. Modify the resulting query to only update 

tuples authorized by the write policy 

 

• Two strategies for step 2: 

– V-Copy 

– No-Copy 
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V-Copy 

• Determines query safety using temporary 

tables 

 

• Given a query, V-Copy always results in 

safe behavior 
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oid cust_id 

V-Copy 
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INSERT INTO orders 

(oid, cust_id) 

VALUES(22, 2); 

1. Copy schema of T 
2. Execute the query on the copy 
3. Check if result is allowed by  
       the write policy 
4.    Execute Null query 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 



oid cust_id 

4 1 

V-Copy 
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DELETE FROM 

orders 

1. Copy  authorized write tuples 
from T 

2. Execute the query on the copy 
3. Check if result is allowed by  
       the write policy 
4.    Propagate changes 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 

oid cust_id 

12 2 

19 3 

21 2 



No-Copy 

• Can only use when: 

– Write Policy for table does not contains a join 

– Query is not a nested INSERT 

– And if the query is UPDATE, the SET clause 

only contains static values 
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No-Copy 

• If the query is DELETE, append 

additional conditions to WHERE clause 
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SELECT O.*  

FROM orders O 

WHERE O.cust_id = 1 

Write Policy 

DELETE 

FROM orders 

DELETE 

FROM orders 

WHERE O.cust_id = 1 



Solution Outline 

• What is Query Safety? 

• How can Query Safety be enforced? 

• Experiments with proposed 

methodology 
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SafeD 

• We created SafeD, a custom JDBC driver, 

that implements both V-Copy and No-Copy 
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Benchmark 

• TPC-C Benchmark 

– Provided in OLTPBenchmark 

– 5 transaction types 

– Scale factor: 20 

– Worker count:  

• 60 (PostgreSQL) 

• 100 (MySQL) 

– Phase Duration: 10 minutes 

37 



Access Roles and Policy 

• Customer: Executes new order, order 

status, payment transactions 

• Managers: Executes delivery and stock 

transactions 
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Performance Measures 

• Average Latency 

• Average Throughput 
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Performance Measurements 

• When queries in the workload are safe 

– What is the performance overhead compared 

to a database without built-in access controls? 

– How does SafeD compare to an existing built-

in access control mechanism 

• How does overall performance vary as the 

number of unsafe queries in the workload 

increase? 
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MySQL Performance Results 

No-Copy has an average latency overhead of 5.9% 
V-Copy has an average latency overhead of 6.1% 
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PostgreSQL Performance Results 

SafeD access controls has comparable performance to built-in Postgres Access Control 
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Modified Security Policy 
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Security Policy – Policy 2 
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PostgreSQL Performance Results 

No-Copy can sustain a much higher transaction throughput with much lower latency 
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Unsafe Queries 

• Previous performance numbers were 

measured when all the queries in the 

workload were safe 

• In addition to the normal TPC-C queries, 

we added a mix of unsafe read and write 

queries to the workload  
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PostgreSQL Performance Results – Unsafe 

Queries with Policy 1 

V-copy does not scale well as the number of unsafe queries increases 
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PostgreSQL Performance Results – Unsafe 

Queries with Policy 1 
No-Copy sustains a higher average transaction rate 
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Syntax Knowledge Required 

• SafeD 
– SELECT 

• PostgreSQL 
– Policy and policy condition 

– Role 

• Oracle 
– System Context 

– Login Trigger 

– Policy 

– Policy function 
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Developer Effort 

• SafeD only requires basic SQL syntax to 
define 

– Policies defined as intuitive SELECT 
statements 

• Postgres and Oracle both have database 
specific syntax for access control 
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