Ensuring Authorized Updates In
Multi-user Database-Backed
Applications

Kevin Eykholt, Atul Prakash, Barzan Mozafari
University of Michigan Ann Arbor

UNIVERSITY OF
MICHIGAN

Database Backend

* Web Applications allow users to remotely
access services

* Information stored in database

Browser

Application Server

>

HTTP
Front-end

M€= App

M€= Driver

Database
Server

<3 —
> 4

Connection
Pool

Symantec Patches High Risk Vulnerabilities in
Endpoint Protection

By SecurityWeek News on March 21, 2016

Symantec has released an update for its Symantec Endpoint Protection (SEP) to resolve
three High risk security vulnerabilities in the product.

According to an advisory issued Mar. 17, the security flaws in Symantec Endpoint Protection
could potentially result in authorized users with low privileges gaining elevated access to the
Management Console. Moreover, the security firm warns that SEP Client security mitigations
could be bypassed to achieve arbitrary code execution on a targeted client.

The first of the three security issues is a cross-site request forgery vulnerability in the
management console for SEPM (CVE-2015-8152), caused by an insufficient security check in
SEPM. An authorized but less-privileged user could gain unauthorized elevated access to the
SEPM management console by including arbitrary code in authorized logging scripts.

In addition to the CSRF issue, Symantec resolved an SQL injection vulnerability in SEPM (CVE-
2015-8153). This security flaw can also be exploited by an authorized, logged-in user to
potentially elevate access to administrative level on the application.

Built-in Database Access Controls

Some DMBS provide fine-grained access control based
context of connected user

ORACLE
Postg reSQI_

Application Server

Database
Server

t;o

Driver
Browser [¢G==p4 Apache (€= App (€= (JDBC) H DBMS

=

Connection
Pool

Built-in Database Access Controls

But database user is not the same as application user!

ORACLE
Postg reSQl_

Application Server

Browser

[€—>> Apache

M€= App

() Driver
(JDBC)

Connection
Pool

Database
Server

Application based Access Controls

« CLAMP and Nemesis both define per-user
access control policies on each table

* Most existing work defines access control
policies using database views

B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig.
Clamp: Practical prevention of large-scale data leaks. In' S & P, 2009.

M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing authentication
& access control vulnerabilities in web applications. In USENIX, 2009.

Database View

« Database views restrict a user to a portion of
the database using a SELECT query

* “Only allow customers to view their own
orders”

SELECT O.*
FROM orders O
WHERE O.cust id = $current id

Database View

« EXxisting technigques use views to restrict read/write
access

 The same gquery can also express the write policy:
“Only allow customers to update their own orders”

SELECT O.*
FROM orders O
WHERE O.cust id = $current id

What if you can't map a
user to authorized rows
INn the table?

Problem

» “Customers can only leave reviews for
items they have purchased”

SELECT R.*
FROM reviews R, orders products P, orders O
WHERE O.cust i1id = current id AND
O.o0i1d = OP.oid AND
OP.product id = R.product id AND
R.cust id = scurrent id

Survey of Existing Web Applications

Web App Total Tables Tables Requiring Join Policy
Wordpress 12 4(33%)
hotCRP 24 6 (25%)
LimeSurvey 36 18 (50%)
osCommerce 40 4 (10%)
MediaWiki 48 10 (21%)
WeBid 55 5(9%)
Drupal 60 12 (20%)
myBB 75 8 (11%)
ZenCart 96 18 (19%)
Cyclos 185 24 (13%)
Average Percent 21%

11

Insecure Code

SCANNED WEB APPLICATIONS VS
IDENTIFIED VULNERABILITIES

- Total number of Total number of - Advisories with
. scanned vulnerabilities multiple
. applications vulnerabilities

@ 269) (1a) (32)
. @

Number of different ' Published
vulnerability types advisories

R. Abela. Infographic: Statistics about the security scans of 396 open source web applications.
https://www.netsparker.com/s/r/bl/2016_statistics_open_source_web_application_scans.png

Insecure Code

Symantec Patches High Risk Vulnerabilities in
Endpoint Protection

By SecurityWeek News on March 21, 2016

Symantec has released an update for its Symantec Endpoint Protection (SEP) to resolve
three High risk security vulnerabilities in the product.

According to an advisory issued Mar. 17, the security flaws in Symantec Endpoint Protection
could potentially result in authorized users with low privileges gaining elevated access to the
Management Console. Moreover, the security firm warns that SEP Client security mitigations
could be bypassed to achieve arbitrary code execution on a targeted client.

The first of the three security issues is a cross-site request forgery vulnerability in the
management console for SEPM (CVE-2015-8152), caused by an insufficient security check in
SEPM. An authorized but less-privileged user could gain unauthorized elevated access to the
SEPM management console by including arbitrary code in authorized logging scripts.

In addition to the CSRF issue, Symantec resolved an SQL injection vulnerability in SEPM (CVE-
2015-8153). This security flaw can also be exploited by an authorized, logged-in user to
potentially elevate access to administrative level on the application.

Symantec patches high risk vulnerabilities in endpoint protection.
http://www.securityweek.com/symantec-patches-high-risk-vulnerabilities-endpoint-protection

13

Design Goals

Generality: Access control policy can be
enforced read/write queries

Correctness: Current user can only
view/modify authorized information

Architectural Compatibllity:

— Solution works with existing web applications
without requiring major changes

— Solution is not database specific

Simple: Preliminary knowledge overhead is
low

Client

Proposed Solution

Application Server

>

HTTP
Front-end

M€= App

Connection
Pool

Database
Server

N
N—

N—

Implement the control in the database driver

Solution Outline

 What is Query Safety?
 How can Query Safety be enforced?
« Experiments with proposed methodology

16

Database Policies

* Two types of policies:
— Read Policy
— Write Policy

* A policy is composed of a set of rules for
each database table

Policy Definitions

» Customers can only view/modify their own
orders

Read/Write Policy

SELECT O.*
FROM orders O
WHERE O.cust id = current 1d

Policy Definitions

« Customers can view items available in the
store

Read Policy

SELECT P.*
FROM products P

Write Policy

SELECT P.*
FROM products P
WHERE 1=0

Policy Definitions

« Customers can read any review, but only
leave reviews for items they purchased

Read Policy

SELECT R.*
FROM reviews R

Write Policy

SELECT R.*
FROM reviews R, orders products P, orders O
WHERE O.cust id = current id AND
O.o1d = OP.oid AND
OP.product 1id = R.product id AND
R.cust i1d = current id

Query Safety

« A safe query is one that allows a user to
only view/modify authorized tuples in the
database identified by the security policy
— Aread query Is safe if it Is read-safe
— A write query Is safe If it Is write-safe

Read-Safe Query

* Aquery Is read-safe if the query’s result is
unchanged when executed on only the
tables a user Is authorized to access

Read-Safe Query

Read Policy

SELECT O.*
FROM orders O
WHERE O.cust id =1

Read-Safe Not Read-Safe
SELECT orders 1id SELECT *
FROM orders FROM orders

WHERE cust 1d =1

Write-Safe Query

* A query is write-safe If:
1. The query is read-safe

2. The query does not modify unauthorized
tuples

 The results of the query should not change if the
guery is restricted to modifying tuples in the write

policy

Write-Safe Query

Write Policy

SELECT O.*
FROM orders O
WHERE O.cust id =1

Write-Safe Queries Not Write-Safe Queries

DELETE FROM orders DELETE FROM orders

WHERE cust id =1
- INSERT INTO orders

AS SELECT *
FROM orders

25

Solution Outline

* What is Query Safety?
« How can Query Safety be enforced?
« Experiments with proposed methodology

26

Ensuring Query Safety

Read Set
Intersection

Read Safe
Query

Select Phantom
Query? Extraction

Write Safe
Query

Execute Safe
Query

27

Read Set Intersection

* Any query can be transformed to a read-
safe query by adding additional conditions
to the WHERE clause of any SELEC
gueries

Read Policy

SELECT O.*
FROM orders O
WHERE O.cust 1d = 1

SELECT *

SELECT *
FROM orders — FROM orders

WHERE O.cust i1d =1

28

Phantom Extraction

1. Transform the query into a read-safe
guery (Read Set Intersection)

2. Modify the resulting query to only update
tuples authorized by the write policy

* Two strategies for step 2:
— V-Copy
— No-Copy

V-Copy

Determines query safety using temporary
tables

Given a query, V-Copy always results in
safe behavior

V-Copy

Customer 1
INSERT INTO orders 1. Copyschemaof T
(0oid, cust id) 2. Execute the query on the copy
VALUES (22, 2); 3. Check if result is allowed by
INSERT INTO orders the write policy
Driver | (oid, cust id) 4 E Null
VALUES (22, 2) : . Execute Null query

4 1 22 2

12 2 SELECT O.*

13 3 FROM orders O
21 2 WHERE O.cust 1id

=1

31

V-Copy

Customer 1
DELETE FROM 1. Copy authorized write tuples
orders fromT
2. Execute the query on the copy
DELETE FROM 3. Check if result is allowed by

Driver | orders

the write policy
4. Propagate changes

12 2
SELECT O.*
19 3 FROM orders O
21 2 WHERE O.cust 1d = 1

32

No-Copy

« Can only use when:
— Write Policy for table does not contains a join
— Query is not a nested INSERT

— And Iif the query is UPDATE, the SET clause
only contains static values

No-Copy

* Ifthe query is DELETE, append
additional conditions to WHERE clause

Write Policy

SELECT O.*
FROM orders O
WHERE O.cust 1d = 1

DELETE

DELETE
FROM orders — FROM orders

WHERE O.cust i1d = 1

34

Solution Outline

* What is Query Safety?
 How can Query Safety be enforced?

 Experiments with proposed
methodology

35

SafeD

* We created SafeD, a custom JDBC driver,
that implements both V-Copy and No-Copy

Client

Application Server

HTTP
>

Server

M€= App

SafeD
Driver

=
=

Connection
Pool

Database
Server

N
N—

MySql/
Postgres

N—

Benchmark

 TPC-C Benchmark
— Provided in OLTPBenchmark
— 5 transaction types
— Scale factor: 20

— Worker count:
* 60 (PostgreSQL)
« 100 (MySQL)
— Phase Duration: 10 minutes

Access Roles and Policy

 Customer: Executes new order, order

status, payment transactions

* Managers: Executes delivery and stock

transactions

Table Name Customer Manager
Customer(C_ID, C_D_ID, C_W_ID) =(CID,DID,WID) Full Access
District(D_ID, D_W_ID) =(DID.WID) =(DID,WID))
Warehouse(W_1D) =(WID) Full Access
OOrderiO_C_ID, O_D_ID, O_W_ID) =(CID,DID,WID) =(DID,WID))
New_Order(NO_O_ID) Contain (OID) in OOrder Full Access
Order_Line(OL_O_ID) Contain (OID) in OOrder Full Access
History(H_C_ID, H_D_ID, H-W_D) =(CID,DID., WID) Full Access
[tem Full Access Full Access
Stock No Access Full Access

38

Performance Measures

* Average Latency

N S,r
ALS,?‘ — Zg:l Ll |
N

* Average Throughput

N S,r
ATS,T — Z@,:l Tl

N

Performance Measurements

 When queries in the workload are safe

— What is the performance overhead compared
to a database without built-in access controls?

— How does SafeD compare to an existing built-
In access control mechanism
 How does overall performance vary as the
number of unsafe queries in the workload
Increase?

MySQL Performance Results

No-Copy has an average latency overhead of 5.9%
V-Copy has an average latency overhead of 6.1%

B NULL
© SafeD (V-Copy)
¥ SafeD (Mo-Com

100 150 200 250 300 350 400 450 500
Transaction Rate (tps)

41

PostgreSQL Performance Results

SafeD access controls has comparable performance to built-in Postgres Access Control

o
o ©
[

I

1
4 W NULL
L B Built-in
SafeD (V-Copy)
. B SafeD (No-Co
100 150 200 P

50 300 350
Transaction Rate (tps)

oy
o
i

Latency (sec)
o
E

=
o ro

42

Modified Security Policy

Table Name Customer Manager

Customer(C_ID, C_D_ID, C_W_D) =(CID,DID,WID) Full Access
District(D_ID, D_W_ID) =(DID.WID) =(DID,WID)
Warehouse(W_ID) =(WID) Full Access
OOrder(O_C_ID, O_D_ID, O_W_ID) =(CID,DID,WID) =(DID,WID)
New_Order(NO_O_ID) Contain (OID) in OOrder Full Access
Order_Line(OL_O_ID) Contain (OID) in OOrder Full Access
History(H_.C_ID, H_D_ID, H-W_ID) =(CID,DID,WID) Full Access
[tem Full Access Full Access
Stock No Access Full Access

43

Security Policy — Policy 2

Table Name Customer Manager
Customer(C_ID, C_D_ID, CW_D) =(CID,DID,WID) Full Access
District{D_ID, D_W_ID) =(DID,WID) =(DID,WID)
Warehouse(W_D) =(WID) Full Access
QOrder(O_C_ID, O_D_D, O_W_D) =(CID,DID,WID) OCID>0
New_Order(NO_0_ID) Contain (OID) in OOrder |Contain (OID) in OOrder
Order_Line(OL_0O_ID) Contain (OID) in OOrder Full Access
History(H_.C_ID, H_D_ID, H-W_ID) =(CID,DID,WID) Full Access

[tem Full Access Full Access

Stock No Access Full Access

44

PostgreSQL Performance Results

No-Copy can sustain a much higher transaction throughput with much lower latency

18 T | |
E‘ 1.6 || === Built-in
o 1.4 ' Built-in [Denarmalized)
1‘? =+==No-Copy

—=No-Copy (Denormalized)

- |
E 0.8
@ oc J‘ +
T 0a .
0.2
]

0 25 50 75 100 125 150 175
Transaction Rate (tps)

45

Unsafe Queries

* Previous performance numbers were
measured when all the queries Iin the
workload were safe

* In addition to the normal TPC-C gqueries,
we added a mix of unsafe read and write
gueries to the workload

PostgreSQL Performance Results — Unsafe

Latency (s)

A

Queries with Policy

V-copy does not scale well as the number of unsafe queries increases

—&— No-Copy
0.1500
0.1000
0.0500
0.0000
0 2 = 6 8 10

47
Percent of Unsafe Quenies in the Workload

Average Transaction Rale (TPS)

PostgreSQL Performance Results — Unsafe

200

400

300

200

100

A

Queries with Policy

No-Copy sustains a higher average transaction rate

-8 V-Copy
—&— No-Copy

1 2 3 4 3 6 [8 9 10

Percent of Unsafe Queries in the Workload
48

Syntax Knowledge Required

« SafeD
— SELECT
* PostgreSQL
— Policy and policy condition
— Role
* Oracle
— System Context
— Login Trigger
— Policy
— Policy function

Developer Effort

« SafeD only requires basic SQL syntax to
define

— Policies defined as intuitive SELECT
statements

* Postgres and Oracle both have database
specific syntax for access control

Access Control Mechanism LOC
SafeD 36
Postgres’s Built-in Access Control 3

Oracle’s Built-in Access Control (a.k.a. VPD) 544

Ensuring Authorized Updates in Multi-user

Database-Backed Applications

Application Server

Client €= "7 €& App

Server

Kevin Eykholt
keykholt@umich.edu

SafeD
Driver

=
=

Connection
Pool

Database
Server

N
N—

DBMS

