
Ensuring Authorized Updates in

Multi-user Database-Backed

Applications

Kevin Eykholt, Atul Prakash, Barzan Mozafari

University of Michigan Ann Arbor

1

Database Backend

• Web Applications allow users to remotely

access services

• Information stored in database

Browser
HTTP

Front-end
App Driver

Connection
Pool

DDBMS

Database
Server

Application Server

2

3

Built-in Database Access Controls

Browser Apache App Driver
(JDBC)

Connection
Pool

DDBMS

Database
Server

Application Server

Some DMBS provide fine-grained access control based
context of connected user

4

Built-in Database Access Controls

Browser Apache App Driver
(JDBC)

Connection
Pool

DDBMS

Database
Server

Application Server

But database user is not the same as application user!

5

Application based Access Controls

• CLAMP and Nemesis both define per-user
access control policies on each table

• Most existing work defines access control
policies using database views

6

B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig.
Clamp: Practical prevention of large-scale data leaks. In S & P, 2009.

M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing authentication
& access control vulnerabilities in web applications. In USENIX, 2009.

Database View

• Database views restrict a user to a portion of
the database using a SELECT query

• “Only allow customers to view their own
orders”

7

SELECT O.*

FROM orders O

WHERE O.cust_id = $current_id

Database View

8

• Existing techniques use views to restrict read/write
access

• The same query can also express the write policy:
“Only allow customers to update their own orders”

SELECT O.*

FROM orders O

WHERE O.cust_id = $current_id

9

What if you can’t map a

user to authorized rows

in the table?

Problem

10

SELECT R.*

FROM reviews R, orders_products P, orders O

WHERE O.cust_id = current_id AND

 O.oid = OP.oid AND

 OP.product_id = R.product_id AND

 R.cust_id = $current_id

• “Customers can only leave reviews for

items they have purchased”

Survey of Existing Web Applications

11

Insecure Code

12

R. Abela. Infographic: Statistics about the security scans of 396 open source web applications.
https://www.netsparker.com/s/r/bl/2016_statistics_open_source_web_application_scans.png

Insecure Code

13

Symantec patches high risk vulnerabilities in endpoint protection.
http://www.securityweek.com/symantec-patches-high-risk-vulnerabilities-endpoint-protection

Design Goals

• Generality: Access control policy can be
enforced read/write queries

• Correctness: Current user can only
view/modify authorized information

• Architectural Compatibility:

– Solution works with existing web applications
without requiring major changes

– Solution is not database specific

• Simple: Preliminary knowledge overhead is
low

14

Proposed Solution

Client
HTTP

Front-end
App Driver

Connection
Pool

DDBMS

Database
Server

Application Server

Implement the control in the database driver

15

Solution Outline

• What is Query Safety?

• How can Query Safety be enforced?

• Experiments with proposed methodology

16

Database Policies

• Two types of policies:

– Read Policy

– Write Policy

• A policy is composed of a set of rules for

each database table

17

Policy Definitions

• Customers can only view/modify their own

orders

18

SELECT O.*

FROM orders O

WHERE O.cust_id = current_id

Read/Write Policy

Policy Definitions

• Customers can view items available in the

store

19

SELECT P.*

FROM products P

Read Policy

SELECT P.*

FROM products P

WHERE 1=0

Write Policy

Policy Definitions

• Customers can read any review, but only

leave reviews for items they purchased

20

SELECT R.*

FROM reviews R

Read Policy

Write Policy
SELECT R.*

FROM reviews R, orders_products P, orders O

WHERE O.cust_id = current_id AND

 O.oid = OP.oid AND

 OP.product_id = R.product_id AND

 R.cust_id = current_id

Query Safety

• A safe query is one that allows a user to

only view/modify authorized tuples in the

database identified by the security policy

– A read query is safe if it is read-safe

– A write query is safe if it is write-safe

21

Read-Safe Query

• A query is read-safe if the query’s result is

unchanged when executed on only the

tables a user is authorized to access

22

Read-Safe Query

23

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

Read Policy

SELECT orders_id

FROM orders

WHERE cust_id = 1

Read-Safe

SELECT *

FROM orders

Not Read-Safe

Write-Safe Query

• A query is write-safe if:

1. The query is read-safe

2. The query does not modify unauthorized

tuples

• The results of the query should not change if the

query is restricted to modifying tuples in the write

policy

24

Write-Safe Query

25

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

Write Policy

DELETE FROM orders

WHERE cust_id = 1

Write-Safe Queries

DELETE FROM orders

Not Write-Safe Queries

INSERT INTO orders

AS SELECT *

 FROM orders

Solution Outline

• What is Query Safety?

• How can Query Safety be enforced?

• Experiments with proposed methodology

26

Ensuring Query Safety

27

Read Set
Intersection

Query

Select
Query?

Execute Safe
Query

Phantom
Extraction

Yes

No

Read Safe
Query

Write Safe
Query

Read Set Intersection

• Any query can be transformed to a read-

safe query by adding additional conditions

to the WHERE clause of any SELECT

queries

28

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

Read Policy

SELECT *

FROM orders

SELECT *

FROM orders

WHERE O.cust_id = 1

Phantom Extraction

1. Transform the query into a read-safe

query (Read Set Intersection)

2. Modify the resulting query to only update

tuples authorized by the write policy

• Two strategies for step 2:

– V-Copy

– No-Copy

29

V-Copy

• Determines query safety using temporary

tables

• Given a query, V-Copy always results in

safe behavior

30

oid cust_id

V-Copy

oid cust_id

4 1

12 2

19 3

21 2

INSERT INTO orders

(oid, cust_id)

VALUES(22, 2);

1. Copy schema of T
2. Execute the query on the copy
3. Check if result is allowed by
 the write policy
4. Execute Null query

Customer 1

Driver

oid cust_id

4 1

12 2

19 3

21 2

INSERT INTO orders

(oid, cust_id)

VALUES(22, 2);

oid cust_id

22 2

31

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

oid cust_id

4 1

V-Copy

OID Cust_ID

4 1

12 2

19 3

21 2

DELETE FROM

orders

1. Copy authorized write tuples
from T

2. Execute the query on the copy
3. Check if result is allowed by
 the write policy
4. Propagate changes

Customer 1

Driver

oid cust_id

4 1

12 2

19 3

21 2

DELETE FROM

orders

oid cust_id

32

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

oid cust_id

12 2

19 3

21 2

No-Copy

• Can only use when:

– Write Policy for table does not contains a join

– Query is not a nested INSERT

– And if the query is UPDATE, the SET clause

only contains static values

33

No-Copy

• If the query is DELETE, append

additional conditions to WHERE clause

34

SELECT O.*

FROM orders O

WHERE O.cust_id = 1

Write Policy

DELETE

FROM orders

DELETE

FROM orders

WHERE O.cust_id = 1

Solution Outline

• What is Query Safety?

• How can Query Safety be enforced?

• Experiments with proposed

methodology

35

SafeD

• We created SafeD, a custom JDBC driver,

that implements both V-Copy and No-Copy

36

Client
HTTP

Server
App

SafeD
Driver

Connection
Pool

MySql/
Postgres

Database
Server

Application Server

Benchmark

• TPC-C Benchmark

– Provided in OLTPBenchmark

– 5 transaction types

– Scale factor: 20

– Worker count:

• 60 (PostgreSQL)

• 100 (MySQL)

– Phase Duration: 10 minutes

37

Access Roles and Policy

• Customer: Executes new order, order

status, payment transactions

• Managers: Executes delivery and stock

transactions

38

Performance Measures

• Average Latency

• Average Throughput

39

Performance Measurements

• When queries in the workload are safe

– What is the performance overhead compared

to a database without built-in access controls?

– How does SafeD compare to an existing built-

in access control mechanism

• How does overall performance vary as the

number of unsafe queries in the workload

increase?

40

MySQL Performance Results

No-Copy has an average latency overhead of 5.9%
V-Copy has an average latency overhead of 6.1%

41

PostgreSQL Performance Results

SafeD access controls has comparable performance to built-in Postgres Access Control

42

Modified Security Policy

43

Security Policy – Policy 2

44

PostgreSQL Performance Results

No-Copy can sustain a much higher transaction throughput with much lower latency

45

Unsafe Queries

• Previous performance numbers were

measured when all the queries in the

workload were safe

• In addition to the normal TPC-C queries,

we added a mix of unsafe read and write

queries to the workload

46

PostgreSQL Performance Results – Unsafe

Queries with Policy 1

V-copy does not scale well as the number of unsafe queries increases

47

PostgreSQL Performance Results – Unsafe

Queries with Policy 1
No-Copy sustains a higher average transaction rate

48

Syntax Knowledge Required

• SafeD
– SELECT

• PostgreSQL
– Policy and policy condition

– Role

• Oracle
– System Context

– Login Trigger

– Policy

– Policy function

49

Developer Effort

• SafeD only requires basic SQL syntax to
define

– Policies defined as intuitive SELECT
statements

• Postgres and Oracle both have database
specific syntax for access control

50

Ensuring Authorized Updates in Multi-user

Database-Backed Applications

Client
HTTP

Server
App

SafeD
Driver

Connection
Pool

DDBMS

Database
Server

Application Server

51

Kevin Eykholt
keykholt@umich.edu

