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Fake accounts (Sybils) in OSNs
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Fake accounts (Sybils) in OSNs

m Facebook: 5-6% of accounts are

fake

By Emil Protalinski | March 8, 2012, 8:17am PST

Summary: Facebook estimates somewhere between 42.25 million and 50.70 million Facebook

ts are either false or duplicate. This is the first time the social networking giant has
revealed such numbers.
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Fake accounts for sale
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Why are fakes harmful?

" Fake (Sybil) accounts in OSNs can be used to:

» Send spam [IMC"10]

» Manipulate online rating [NSDI’'09] ,
P 5 5 Like

> Access personal user info [S&P’11]
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Why are fakes harmful?

Facebook: 5-6% of accounts are
Bl

Emil Protalinski

“the geographic location of our users is estimated based on a number of
factors, such as IP address, which may not always accurately reflect the
user's actual location. If advertisers, developers, or investors do not

perceive our user metrics to be accurate representations of our user base,

or if we discover material inaccuracies in our user metrics, our reputation

may be harmed and advertisers and developers may be less willing to
allocate their budgets or resources to Facebook, which could negatively
affect our business and financial results.”




Detecting Sybils is challengin

" Sybils may resemble real users

Amanda Nelson Find Friends Home \Unfriends* +

‘ Amanda Nelson | # Edit Profile || view as...|

@ Worked at Maine South High School # Studied at Central Maine Community College d Livesin
Brunswick, Maine # From Brunswick, Maine @ Born on February 18, 1393 «# Edit Profile

People You May Know See All

Melanie Bryant

; ! <8l Add Friend

=]
[£) update Status Add Photo / Video ==

Miole Abiemondo

Difficult to automatically detect using
profile and activity features
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Current practice

" Employs many counter-measures

" False positives are detrimental to user experience

> Real users respond very negatively

User abuse reports Human
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Ii m=pp | classification | === | Suspicious
Ii (Machine learning) accounts
Mitigation
mechanisms

‘ Re CAPTCHA
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Current practice

" Employs many counter-measures

" False positives are detrimental to user experience
> Real users respond very negatively
" Inefficient use of human labor! tuentl
" Tuenti’s user inspection team
> Reviews ~12, 000 abusive profile reports per day

» An employee reviews ~300 reports per hour
» Deletes ~100 fake accounts per day

1vil usa t1VvU1I11L
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Can we improve the workflow?
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Leveraging the social relationship

" The foundation of social-graph-based schemes

» Sybils have limited social links to real users

Attack edges

" Can complement current OSN counter-measures
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Non-Sybll region Sybll reglon
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Goals of a practical
social-graph-based Sybil defense

B Effective

» Uncovers fake accounts with high accuracy

¥ Efficient

» Able to process huge online social networks
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How to build a practical
social-graph-based Sybil defense?

SybilGuard [SIGCOMM’06]

SybilLimit [S&P’08]
SybilInfer [NDSS’09]
O = 1 .
o Sybil* is too expensive in OSNs

> Designed for decentralized settings
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How to build a practical
social-graph-based Sybil defense?

PageRank [Page et al. 99]
EigenTrust [WWW’03]

Traditional
trust inference?

" Sybil* is too expensive in OSNs

> Designed for decentralized settings

" PageRank is not Sybil-resilient

it
I

i ..,,,"_‘"i"E " EigenTrust is substantially
manipulable [NetEcon’06]

14



SybilRank in a nutshell

" Uncovers Sybils by ranking OSN users
» Sybils are ranked towards the bottom
> Based on short random walks
» Uses parallel computing framework

@'hadmap

" Practical Sybil defense: efficient and effective
» Low computational cost: O(n log n)
» 220% more accurate than the 27d best scheme

» Real-world deployment in Tuenti "
(tuenti
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Primer on short random walks

® Short random walks

Trust seed |

Limited probability of
escaping to the Sybil region
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SybilRank’s key insights

¥ Main idea

» Ranks by the landing probability of short random walks

" Uses power iteration to compute the landing
probability
> Iterative matrix multiplication (used by PageRank)
» Much more efficient than random walk sampling (Sybil¥)
» O(n log n) computational cost

> As scalable as PageRank Google

PageRank™




An example

" Landing probability of short random walks

Initialization

0

1/2 1/2 0
0 Trust seed O Non-Sybil users O Sybils ..



An example

" Landing probability of short random walks
Step 1

0

1/6 1/4 0
0 Trust seed O Non-Sybil users O Sybils
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An example

" Stationary distribution

» Identical degree-normalized landing probability: 1/24
2124

3/24

3/24 2124

2124 3/24 3/24
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An example

1/65

1/6
O :
1/5 1/8 1/12 1/81
A = \ F I

Non-Sybil users have higher
degree-normalized landing probability

©O—0) H)

1/6 1/4 1/65
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How many steps?

" O(log n) steps to cover the non-Sybil region

» The non-Sybil region is fast-mixing (well-connected)
[S&P’08 ]

O(log n) steps g Trust seed

Stationary distribution approximation ,



Overview

" Problem and Motivation
" Challenges

" Key Insights

" Design Details

® Evaluation



We divide the landing probability
by the node degree

" Eliminates the node degree bias
» False positives: low-degree non-Sybil users

> False negatives: high-degree Sybils

" Security guarantee
» Accept O(log n) Sybils per attack edge

Theorem: When an attacker randomly establishes g attack edges
in a fast mixing social network, the total number of Sybils that
rank higher than non-Sybils is O(g log n).

Rankings QOOOOOOOOOOQOOOOO

¥
Only O(g log n) O 24




Coping with the
multi-community structure

" A weakness of social-graph-based schemes
[SIGCOMM'10]

& Trust seed

Fresno San Francisco

25



Coping with the
multi-community structure

" Solution: leverage the support for multiple seeds

> Distribute seeds into communities
& Trust seed

Fresno San Francisco
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How to distribute seeds?

¥ Estimate communities
» The Louvain method
[Blondel et al., J. of Statistical Mechanics’08]

" Distribute non-Sybil seeds in communities
» Manually inspect a set of nodes in each community

» Use the nodes that passed the inspection as seeds (%

> Sybils cannot be seeds @
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Evaluation

" Comparative evaluation
" Real-world deployment in Tuenti
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Comparative evaluation

" Stanford large network dataset collection

" Ranking quality

» Area under the Receiver Operating Characteristics (ROC)
curve [Viswanath et al., SIGCOMM'10]

" Compared approaches
» SybilLimit (SL)
» Sybillnfer (SI)
» EigenTrust (ET)
» GateKeeper [INFOCOM'11]

» Community detection i -
[SIGCOMM’]_O] 0 False Positive Ratio 1

True Positive Ratio

[Fogarty et al., GI'05] 2



SybilRank has the lowest false rates

o

=T /SybilRank

O

% 0 sl EigenTrlist o eR
<07 s
o UL T —a— S
% —e— S|

20% lower false positive and false negative
rates than the 2"d best scheme
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Number of Attack Edges
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Real-world deployment

" Used the anonymized Tuenti social graph

» 11 million users
» 1.4 billion social links

> 25 large communities with >100K nodes in each
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A 20K-user Tuenti community




Various connection patterns

among suspected fakes
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A global view of
suspected takes” connections

50K suspected accounts
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SybilRank is effective

" Percentage of fakes in each 50K-node interval
» Estimated by random sampling

> Fakes are confirmed by Tuenti’s inspection team

0 ; High percentage
0:8 of fakes

~180K fakes among the lowest-ranked 200K users

0.4
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Conclusion: a practical Sybil defense

" SybilRank: ranks users according to the landing
probability of short random walks
» Computational cost O(n log n)
» Provable security guarantee

" Deployment in Tuenti @ tuent

» ~200K lowest ranked users are mostly Sybils

" Enhances Tuenti’s previous Sybil defense workflow
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Thank You!

qgiangcao@cs.duke.edu
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