
Daniel “Spoons” Spoonhower, CTO and Co-founder

Building Service Ownership
Using Documentation, Telemetry,
and a Chance to Make Things Better

Spoons (aka Daniel Spoonhower)
CTO and Co-founder, Lightstep

2

@save_spoons

spoons@lightstep.com✉

Who am I?

Some
Background

3

4

SRE Dev

SRE Dev

SRE Dev

SRE Dev

SRE
Dev

Dev
Dev Dev

Dev

5

CC BYSA Kharnagy

6

Dev

Dev
Dev Dev

DevSRE

How do we create a map between our
software architecture and our organization?

Service ownership, defined

Dev teams are responsible for delivery of software and service

Includes activities such as:
- Writing code 😁
- Fixing bugs 😞
- Incident response
- Cost management
- Capacity planning
- …

7

Increased independence
 ==> Higher developer velocity

Autonomous decisions
 ==> Better outcomes

Obstacles to successful service ownership

You can’t have independence without clear responsibilities and goals.

You can’t scale autonomy without consistent ways of measuring and
reporting on progress and outcomes.

You will meet (strong) resistance to changes ownership unless you also
give teams the agency to change things.

8

9

Ownership means Accountability and Agency

Effective ownership requires Distributed Tracing

Importance of Documentation, Oncall, and SLOs

Distributed Tracing

10

Traces are a form of telemetry based on spans with structure
- Span = timed event describing work done by a single service

Tracing is a diagnostic tool that reveals…

 … how a set of services coordinate to handle individual user requests
 … from mobile or browser to backends to databases (end-to-end)
 … including metadata like events (logs) and annotations (tags)

Provides a request-centric view of application performance

Distributed tracing, defined

12

Relationships matter

13

Traces encode causal relationships between callers and callees

calls
returns

Traces = raw material, not finished product

Distributed traces – basically just structs

Distributed tracing – the art and science of deriving value from traces

14

Building Service
Ownership

15

16

Docs
Oncall

SLOs

Start with expertise... then ownership

Make it easy to find related:

- Telemetry and dashboards
- Alert definitions
- Playbooks

Use a template!

Track last-modified dates

- Require periodic audits & updates

Centralized documentation

17

Make documentation machine-readable

Use it to generate:

- Dashboard config
- Escalation policy config
- Deployment pipeline config
- …

Make updating documentation
necessary for day-to-day work

Centralized documentation

18

& Machine-readable

It’s hard to keep service dependencies
up to date manually…

So don’t!

Use telemetry from the application

- Traces, in aggregate, reveal
service dependencies

- Service levels show current
reliability

Centralized documentation

19

& Machine-readable

& Dynamic!

Record who is accountable

Automate many mundane tasks

Train new team members

Build confidence

Why is documentation important?

20

Oncall is (often) responsible for…

- Incident response
- Communicating status internally &

externally
- Production change management

- Deploying new code
- Pushing infrastructure changes

- Monitoring dashboards
- Low-urgency alert triage
- Customer requests

- And other interrupt driven work
- Shift handoffs
- Writing postmortems

Oncall

21

Photo by VT98Fan and Starwhooper

https://commons.wikimedia.org/wiki/User:VT98Fan
https://commons.wikimedia.org/wiki/User:Starwhooper

Iterating toward ownership

Establish a need to split
- Survey expertise & happiness
- Look at response time, number

of people per incident

Some shock absorbers:
- Experts on the rotation
- Good documentation
- Balance between rotation size

and number of services

22

How to improve incident response:

- Reduce response times
- Deliver alerts to the right teams

Handling alerts

23

More context ⟶ mitigating faster

24

Send alerts directly
to the teams that
are responsible for
taking action!

“Are We All on the
Same Page?”
Luis Mineiro @
SREcon19 EMEA

Dynamic alert delivery

25

How to improve incident response:

- Reduce response times
- Deliver alerts to the right teams

Handling alerts

26

- Delete unnecessary alerts
- Adjust rotation schedule to better fit

team and sprint structure

Photo by Steve Johnson on Unsplash

https://unsplash.com/@steve_j
https://unsplash.com/

“How will we do better next time?”

- Ensure underlying issues are fixed
- Improve responses for novel issues

Improving postmortems

27

Photo by Tamara Gak on Unsplash

https://unsplash.com/@tamara_photography
https://unsplash.com/

Postmortems are documentation

Make it easy!
Make sure they are centralized
Make sure action items and other info are
captured in a structured way
And of course) leverage telemetry

28

Direct impact on customer experience (revenue, reputation, etc.)

Time spent handing pages, writing postmortems, handling interrupts is...
time not spent building new features, proactive optimization

Stress of oncall has major impact on job satisfaction

Why is improving oncall important?

29

Service Level Objectives

- Customer expectations for the
service your provide

- Both external and internal customers
- With a threshold that lets you report

success/failure over time (or groups of events)

- As a means of communicating how
reliable the service is

SLOs

30

p99 latency < 5s over the last 5 minutes

threshold

service level indicator (SLI measurement window

Aim for less-than-perfect

- three nines, 99.5%, 98.2%, ...

Common indicators

- Latency (p50, p99, etc.)
- Error rate

But specific to the endpoints,
operations, and flows of your application

Ask:

- What do your customers expect?
- What can you provide today?
- How do you expect that to change?

Determining SLOs

31

Derive internal SLOs using tracing

32

A

B

C

A p99 latency < 5s

B p99 latency < 5s

C p99 latency < 2.5s

D

~p99.5 latency < 2.5s

They measure success in delivering service

Teams use them as a guide to prioritize work

Consistency and transparency across your org
- Hold teams accountable in a uniform way

Why are SLOs important?

33

3-piece puzzle review

Documentation
- Establishes ownership: who you will hold accountable
- Don’t try to manually manage dependency lists, etc.

Oncall
- More than just incident response
- Use docs and telemetry as part of investigation, automation,

communication
SLOs
- How you communicate and measure success!
- Define objectives for internal services using tracing

34

Docs
Oncall

SLOs

Next steps…

35

Making changes

Rolling out new processes/tools with many teams is hard
1. Process/tools must provide value to dev teams
2. Ideally, they are necessary parts of their day-to-day work

To establish and maintain service ownership
- Use a combination of docs, oncall process, and SLOs
- Manufacture a need for those process/tools where necessary
- Give teams a budget for improving docs, alerts, and reliability

36

Ownership = Accountability + Agency

Accountability
- Set deliverables and goals for service owners
- Judge their performance based on those deliverables and goals

Agency
- Offer the information, confidence, and budget to improve

37

Telemetry provides key information to drive both!

Daniel “Spoons” Spoonhower, CTO and Co-founder

Thank you

@save_spoons

