
Production 
Population Control: 
My Cattle Are 
Rabbits!

Alex Nauda
CTO, Nobl9



Evolution of infrastructure environments

until 2010 2011-2015 2016-2020

Pets
● High maintenance
● Long-lived
● Precious
● Named

Cattle
● Lower maintenance
● Shorter-lived
● Disposable
● Tagged

Rabbits
● Unmaintainable
● Temporary
● Pests
● Forgotten

DC / Colo Public Cloud Kubernetes

TOO MANY



How many environments?

Per application:
● ~1 Production env

○ (max 2-3 if HA)
● 3 Test envs

○ Int, QA, Staging

Per application:
● 2-3 Production envs

○ Active/Warm/Cold
● 6-9 Test envs

○ Each team, CI, branch

Per application:
● >10 Production envs

○ Multi-region and -cloud
● Countless Test envs

○ Dynamically stood up
and torn down

MULTIPLYING

until 2010 2011-2015 2016-2020



How many prod environments do we need?

Production:
● Regional HA - One for every supported region of every 

supported cloud
● DR - Active/active/passive/warm/cold
● Blue/Green - A blue for every green

Often no traffic



How many test environments do we need?

Test:
● Shared, hosted development environment

○ ...per team
● Individual developers' hosted environments

○ ...for at least some back end devs, but everyone wants one
● CI environment for every pull request
● QA
● Staging
● UX validation
● Sales demo
● Pen testing

Often no traffic} Also, who responds to 
alerts for these?



Problem statement

All of these environments are
● Unmanageable
● Expensive
● Overstimulating
● Diverse

○ Variety of use cases and traffic 
patterns

○ Differing requirements for reliability

We need appropriate SLOs to 
monitor these environments



Properties of SLOs: 1. Low context

Not like this Like this!

SET AND FORGET



Properties of SLOs: 2. Easily tunable

Not like this Like this!

TURN THAT DOWN (OR UP)



Must be automatable (Gitops, IaC)

CI / CD

Infrastructure (hosts, clusters, network)

Repos

Applications

SLOs



What to pick for SLIs?

Traditional SLIs depend on user activity
● Key business metrics
● Tied to user satisfaction
● Who even are the users of your test envs and your DR cold site?

What can we do instead?

First of all, we can use an occurrences-based SLO

Next, we can monitor for lights-on behavior

Finally, we can use synthetics
...and we can do that across the entire stack



Occurrences-based SLOs

(a/k/a Event-based SLOs)
Measure a straight ratio of successful events (requests, jobs, attempts)

...as opposed to time slices - good minutes vs bad minutes
This can be used with any counter type metric

So they automatically adjust for low traffic periods



Lights-on SLIs for infrastructure and clusters

● kube-state-metrics
○ Are my nodes on?

■ count(kube_node_status_condition{condition="Ready", status="false"}) == 0
○ Are my pods on?

■ sum(kube_deployment_status_replicas_unavailable) == 0
■ sum(kube_daemonset_status_number_unavailable) == 0

● Is my k8s not broken?
○ Kubernetes API response time (Occurrences method SLO)
○ Pod start latency (Occurrences method SLO)



Lights-on SLIs for applications

● Hosting-specific ingress or load balancing
○ e.g. AWS ALB unhealthy count == 0

● Latency of requests/events (Occurrences method SLO)

● Success of requests/events (Occurrences method SLO)



Synthetic SLIs for infrastructure and clusters

Kuberhealthy
○ DNS resolution

■ avg(kuberhealthy_check{check=~"kuberhealthy/dns-status.*", status="1"}) / 
avg(kuberhealthy_check{check=~"kuberhealthy/dns-status.*"})

○ Deployment works
■ avg(kuberhealthy_check{check="kuberhealthy/deployment", status="1"}) / 

avg(kuberhealthy_check{check="kuberhealthy/deployment"})

○ Daemonset works
■ As above; check="kuberhealthy/daemonset"



Synthetic SLIs for applications

● Have automated functional tests
○ Popular tools in this space

■ Mabl
■ Runscope (back end)
■ Ghost Inspector (front end)

● Run them regularly in every environment
○ In production, use an isolated account or tenant
○ In test environments, run them every so often to give your 

SLOs something to measure to detect bad deploys
○ Example SLO:

■ Total tests succeeding / total tests run over 1 hour
■ Very strict target in production
■ Lower target for lower order environments



Define clear ownership of non-production SLOs

Developers need autonomy in their workflow, so encourage it
● Developers should own their own individual hosted environments
● Shared development environments, QA, etc.

○ Consider assigning a rotating daytime on-call sprint by sprint
● Business-critical environments need special care

○ Treat internal business-facing environments as production
○ Lower criticality during non-working hours



Rabbit control

● Prerequisite: automatable SLOs-as-code
● Create a set of simple SLOs that work in any environment

○ Set and forget (until they alert)
● Work around the issues caused by sparse traffic

○ Monitoring lights-on behaviors
○ Making the most of synthetics

● Define clear alert policies and ownership for these generated SLOs



Thank You

Alex Nauda
CTO, Nobl9

SREcon Slack Alex Nauda

Twitter @alexnauda

Email alex@nobl9.com


