Production

Population Control:
My Cattle Are
Rabbits!

~ ~ -
N EEN ~
\ \ A Y Y WA N N
‘¢ 0 N T T U YA N
v ¢ 2N 2N B B AR N AR A | \
v o0 P A A A A A
L v vt L
............. v v 7
,,,,,,,,,,,,,, / /A
\\\\\\\\\\\\\\\ st 7
F S S
Alex Nauda

(l" Ob(, “““““ VAN A NN . e
N | A v (NN .~ o o 7
1

' NN

\\\\\\\\\\\\

\\\\\\\\

LS TS

#

"7 20162020

DC / Colo Public Cloud Kubernetes

Pets Cattle Rabbits
e High maintenance e Lower maintenance e Unmaintainable
Long-lived e Shorter-lived e Temporary
Precious e Disposable e Pests
Named e Tagged e Forgotten

TOO MANY

How many environments?

h |
n -

N e
X ?'ﬁﬁi 4

s
.
" v -

T 20162020

-

Per application: Per application: Per application:
e ~1Production env e 2-3 Production envs e >10 Production envs
o (max2-3if HA) o Active/Warm/Cold o Multi-region and -cloud
e 3Testenvs e 6-9Testenvs e Countless Test envs
o Int, QA, Staging o Each team, ClI, branch o Dynamically stood up
and torn down

MULTIPLYING]

P RS
<~~~ ——-

NAs~ee

How many prod environments do we ne:

N

Production:

e Regional HA - One for every supported region of every
supported cloud

e DR - Active/active/passive/warm/cold

e Blue/Green - A blue for every green ‘k

Often no traffic

How many test environments do we

Test:

e Shared, hosted development environment

o ..perteam

e Individual developers' hosted environments

o ..for at least some back end devs, but everyone wants one
Cl environment for every pull request
QA
Staging
UX validation Often no traffic Also, who responds to
Sales demo alerts for these?
Pen testing

Problem statement

View Query

© Target:95%

All of these environments are

e Unmanageable 0 -
o EXpenSive - Reliability Burn Down Error Budget Remaining
e Overstimulating e 16 ™
e Diverse -
o Variety of use cases and traffic 56.00 e
patterns " » 1.02x
o Differing requirements for reliability
_> We need appropriate SLOS tO o | Reliability Burn Down Error Budget Remaining

monitor these environments \R 57

., Burn Rate (last x min)

0.89 x

. AV N R N N I R

/0 T LA BT N A A

c el e (R~~~ 2l AN P NN

. w,\\\\\\\\\,///t\\~ PR S B AR

[] ‘ ~~NAAA NSNS ol pooeees®0 80000 co

. s NN

~— PR -

roperties o S. 1. LOW contex N
S SN

MA
e D

R >

4Q
s rend S
=30 rnoghs

Not like this Like this!

SET AND FORGET

Not like this Like this!

TURN THAT DOWN (OR UP)

Must be automatable (Gitops, IaC)L

L st -
.. —

Cl/CD

Infrastructure (hosts, clusters, networh

*[Applications]

SLOs]

&

%

What to pick for SLIs?

Traditional SLIs depend on user activity

e Key business metrics

e Tied to user satisfaction

e Who even are the users of your test envs and your DR cold site?
What can we do instead?

—Pp First of all, we can use an occurrences-based SLO

- Next, we can monitor for lights-on behavior

——p» Finally, we can use synthetics
...and we can do that across the entire stack

Occurrences-based SLOs

(a/k/a Event-based SLOs)

Measure a straight ratio of successful events (requests, jobs, attempts)
...as opposed to time slices - good minutes vs bad minutes

This can be used with any counter type metric

——pp So they automatically adjust for low traffic periods

e kube-state-metrics

o Are my nodes on?
m count(kube_node_status_condition{condition="Ready", status="false"}) ==

o Are my pods on?
m sum(kube_deployment_status_replicas_unavailable) ==
m sum(kube_daemonset_status_number_unavailable) ==

e Is my k8s not broken?
o Kubernetes API response time (Occurrences method SLO)
o Pod start latency (Occurrences method SLO)

Lights-on SLlIs for applications

e Hosting-specific ingress or load balancing
o e.g. AWS ALB unhealthy count ==

e Latency of requests/events (Occurrences method SLO)

e Success of requests/events (Occurrences method SLO)

-

~o7 NSNS o
/7 PANS

s

s

s’

Synthetic SLIs for infrastructure and clusters

Kuberhealthy 4 kuberhealthy

o DNS resolution

m avg(kuberhealthy_check{check=~"kuberhealthy/dns-status*", status="1"}) /
avg(kuberhealthy_check{check=~"kuberhealthy/dns-status.*"})

o Deployment works
m avg(kuberhealthy_check{check="kuberhealthy/deployment", status="1"}) /
avg(kuberhealthy_check{check="kuberhealthy/deployment"})

o Daemonset works
m As above; check="kuberhealthy/daemonset"

Synthetic SLlIs for applications

Have automated functional tests

@)

Popular tools in this space

m Mabl

m Runscope (back end)

m Ghost Inspector (front end)

Run them regularly in every environment

O
O

In production, use an isolated account or tenant

In test environments, run them every so often to give your
SLOs something to measure to detect bad deploys
Example SLO:

m Total tests succeeding / total tests run over 1 hour

m Very strict target in production

m Lower target for lower order environments

v

Define clear ownership of non- produt:ftiibﬁ"SL

Developers need autonomy in their workflow, so encourage it
e Developers should own their own individual hosted environments
e Shared development environments, QA, etc.

o Consider assigning a rotating daytime on-call sprint by sprint
e Business-critical environments need special care

o Treat internal business-facing environments as production

o Lower criticality during non-working hours

Rabbit control

e Prerequisite: automatable SLOs-as-code
e Create a set of simple SLOs that work in any environment
o Set and forget (until they alert)
e Work around the issues caused by sparse traffic
o Monitoring lights-on behaviors
o Making the most of synthetics
e Define clear alert policies and ownership for these generated SLOs

Thank You

Alex Nauda
CTO, Nobl9

SREcon Slack Alex Nauda

Twitter @alexnauda

Email alex@nobl9.com

