Implementing
Distributed Consensus

& Dan Ludtke

danri@google.com

any company (including Google). This talk is

Disclaimer This work is not affiliated with
the result of a personal education project!

What?

e My hobby project of learning about Distributed Consensus
o limplemented a Paxos variant in Go
o |learned a lot about how computers reach consensus
o This talk: A fine selection of some of the mistakes | made
e |Language used: Go
o Code is likely readable for enthusiasts of other languages as well
o | relied on some Go features, similar features exist in other languages

Distributed Consensus

Kiwa

o f‘[

Y " rLiulc Pele,
I/

s X
\Je

§
r’\f'a

pathef ¢

&
%‘Ln
e

S
evirOr

O

/I \\

U
ayovs §
X

@0’\'&“ GQM SW

/ lw Sl—wax ﬁ
p \ \S\a e potatofl
7 ey

N

au~/ ?&7 v

Protocols

e Paxos
o Multi-Paxos
o Cheap Paxos

e Raft

e ZooKeeper Atomic Broadcast
e Proof-of-Work Systems

o Bitcoin
e Lockstep Anti-Cheating

o Age of Empires

Raft Logo: Attribution 3.0 Unported (CC BY 3.0) Source: https://raft.github.io/#implementations
Etcd Logo: Apache 2 Source: https://github.com/etcd-io/etcd/blob/master/LICENSE
Zookeeper Logo: Apache 2 Source: https://zookeeper.apache.org/

Implementations

Chubby

o coarse grained lock service
etcd

o a distributed key value store

metcd

e Apache ZooKeeper

o a centralized service for
maintaining configuration
information, naming, providing
,distributed synchronization

https://raft.github.io/#implementations
https://github.com/etcd-io/etcd/blob/master/LICENSE

Paxos

Paxos Roles

Client

o Issues request to a proposer

o Waits for response from a learner
m Consensus on value X
m No consensus on value X

Proposer
Acceptor
Learner
Leader

Consensus
on X?

client

Paxos Roles

e C(Client
e Proposer (P)

o Advocates a client request

o Asks acceptors to agree on the
proposed value

o Move the protocol forward when
there is conflict

e Acceptor
e Learner °
e |eader

Proposing X...

client

Paxos Roles

. Cliont o Q O
-

e Proposer (P)
e Acceptor (A)

o Also called "voter"
o The fault-tolerant "memory" of the °
system
o Groups of acceptors form a quorum
e Learner
e Leader °

Paxos Roles

Client

Proposer (P)

Acceptor (A)

Learner (L)
o Adds replication to the protocol
o Takes action on learned (agreed

on) values
o E.g.respond to client

Leader

Paxos Roles

Client
Proposer (P)
Acceptor (A)
Learner (L)
Leader (LD)

o Distinguished proposer
o The only proposer that can make

progress

o Multiple proposers may believe to
be leader

o Acceptors decide which one gets a
majority

Yea

Coalesced Roles

e A single processors can have
multiple roles
o P+
o Proposer

o Acceptor
o Learner

e Client talks to any processor
o Nearest one?
o Leader?

client

Coalesced Roles at Scale

e P+ system is a complete digraph
o adirected graph in which every pair of
distinct vertices is connected by a pair of
unique edges

o Everyone talks to everyone

e Let n be the number of processors
o a.k.a. Quorum Size

e Connections=n*(n-1)
o Potential network (TCP) connections

client

Coalesced Roles with Leader

e P+ system with a leader is a directed
graph

o Leader talks to everyone else

e Let n be the number of processors
o a.k.a. Quorum Size

e Connections =n -1
o Network (TCP) connections

client

Coalesced Roles at Scale

©] W Without Leader
1 B With Leader

Maximum
quorum size
seenin

Connections
300
1

13 . ” -
real life _o
o”
(=] .0
8 4
-0
] _0- - - —
o4 o g——o0o——O0— — - - -
) ' T T T T T 1
5 10 15 20 25

Quorum Size

Limitations

- Single consensus
- Once consensus has been reached no more
progress can be made
- But: Applications can start new Paxos runs

- Multiple proposers may believe to be the

leader

- dueling proposers
- theoretically infinite duel
- practically retry-limits and jitter helps

- Standard Paxos not resilient against
Byzantine failures

- Byzantine: Lying or compromised processors
- Solution: Byzantine Paxos Protocol

=
o)
o
®©
cC
<
R
=
X
£
=
[}
<
>
o]
©
c
ke
=
®
c
c
[9)
Qo
£
o
<
o)
=
<
[0}
o
@®©
<
@
c
ke
=
>
Ee]
=
=]
Z
(2]}
c
o
€
IS
o)
(@]
o
=
=
@©
)
o
O

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Introducing

Paxos-based
Minimalistic
Educational
Lock Service

The “Giraffe”, “Beaver”, “Alien”, and “Frame” graphics on the following slides have been released under Creative Commons Zero 1.0 Public Domain License

Skinny "Features”

Designed to be easy to understand
Relatively easy to observe
Coalesced Roles
Single Lock
o Locks are always advisory!
o Alock service does not enforce
obedience to locks.
Go
Protocol Buffers
gRPC
Do not use in production!

& danrl / skinny ®

<> Code 1% Pull requests (*) Actions) Security |~ Insights 1 Settings

¥ master ~ ¥ 2branches © 0tags Go to file Add file ~

&% danrl Add Github actions badge v b%a379a onMay 23 O 20 commits
B .github/workflows Update go.yml 6 months ago
W omd Add GolangCl checks and fixes (#1) 2 years ago
= config readibility: remove unnecessary pointer semantics (#6) 2 years ago
B doc make experiment reset scripts executable 14 months ago
i proto make experiment reset scripts executable 14 months ago
Bm skinny Don't use deprecated API function (#9) 14 months ago
[.gitignore Add workshop configs (#8) 15 months ago
[.golangciyml Style improvements (#2) 2 years ago
™ LICENSE initial commit 2 years ago
[README.md Add Github actions badge 6 months ago
[go.mod Add workshop configs (#8) 15 months ago
[go.sum Add workshop configs (#8) 15 months ago
[magefile.go fixup! initial commit 2 years ago
README.md V4

The Skinny Distributed Lock Service

github.com/danrl/skinny

Assuming a wide quorum

e |nstances

O

O O O O

Oregon (North America)
Sé&o Paulo (South America)
London (Europe)

Taiwan (Asia)

Sydney (Australia)

e Unusual in practice

(@)

"Terrible latency"

e Perfect for observation and
learning

(@)

Timeouts, Deadlines, Latency

How Skinny reaches consensus

SKINNY QUORUM

Lock
please?

ID 0

PHASE 1A: PROPOSE Promised ©
Holder
ID 0 ID . 0
Promised © Promised 6
Holder Holder

Proposal
ID 1

Proposal
ID 1
[Proposal }
ID 1
Lock
please?

Proposal
ID 1

ID 0 41‘——7
Promised 0 ID 0 \
Holder Promised 1

Holder

ID 0

PHASE 1B: PROMISE Promised 1
Holder
Promised 1 1D 1 Promised 1
Holder Holder

ID

Promise
ID 1 {Promise }
D 1

e ™
Promise
ID 1
ID 0
Promised 1 ID 0
Holder Promised 1
Holder

ID 0
PHASE 2A: COMMIT Promised 1

Holder

ID 0 Commit ID 0
Promised 1 ID 1 Promised 1

Holder Holder Beaver Holder

Commit
ID 1

Holder Beaver

Commit
ID 1
Holder Beaver

(Commit
ID 1
<_ Holder Beaver
ID 0
Promised 1 ID 1
Holder Promised 1
Holder Beaver

PHASE 2B: COMMITTED

ID

Holder

1

Promised 1

Beaver

ID

1

Promised 1

Holder

Beaver

[Committed

Committed

ID

Holder

1

Promised 1

Beaver

Comm1tted

ID 1
Promised 1
Holder Beaver

[Commltted]

Lock acquired!

Holder is Beaver.

|

ID

Holder

1

Promised 1

Beaver

How Skinny deals with
Instance Failure

ID 9
SCENARIO Promised 9

Holder Beaver

ID 9
Promised 9
Holder Beaver ID 9
Promised 9
Holder Beaver
ID 9 ID 9
Promised 9 Promised 9

Holder Beaver Holder Beaver

ID 9
TWO INSTANCES FAIL Promised 9

Holder Beaver

ID 9
Promised 9
Holder Beav

D 9
Promised 9
Holder Beaver

ID 9 ID 9
Promised 9 Promised 9
Holder Beaver Holder Beaver

INSTANCES ARE BACK
BUT STATE IS LOST

ID 0

Promised ©

Holder
Lock

please?

©

ID 9
Promised 9
Holder Beaver

©

ID 9
Promised 9
Holder Beaver

©

Promised 9
Holder Beaver

ID 0
Promised O
Holder

ID 9
INSTANCES ARE BACK Promised 9

BUT STATE IS LOST Holder Beaver

ID 3
Promised 3
Holder Proposal ID %)
ID 3 Promised O
Lock Holder
please? (Proposal }»@
Proposal
ID 3
ID 9 ID 9
Promised 9 Promised 9

Holder Beaver Holder Beaver

ID 9
PROPOSAL REJECTED Promised 9

Holder Beaver

ID 3

Promised 3 NOT Promised

Holder ID 9 1) 9
Holder Beaver Promised 3

Holder

(Promise
LID 3
NOT Promised

ID 9 NOT Promised
Holder Beaver 1D 9

Holder Beaver

ID 9 ID 9
Promised 9 Promised 9
Holder Beaver Holder Beaver

ID 9
START NEW PROPOSAL Promised 9

WITH LEARNED VALUES Holder Beaver

ID 9
Promised 12
Holder Beaver Proposal ID 0
ID 12 Promised 3
Holder
(Proposal }_’@
Proposal
ID 12
ID 9 ID 9
Promised 9 Promised 9

Holder Beaver Holder Beaver

ID 9
PROPOSAL ACCEPTED Promised 12

Holder Beaver

ID 9
Promised 12 Prom1se
Holder Beaver ID 12 ID 0
Promised 12
Holder
(Promise
LID 12
Promise
ID 12 .
Promise
ID 12
ID 9 ID 9
Promised 12 Promised 12

Holder Beaver Holder Beaver

ID 9
COMMIT LEARNED VALUE Promised 12

Holder Beaver

ID 12
Promised 12

Holder Beaver %ﬁmmi: b o ;
Holder Beaver E;;z:ied 12
[Commit

ID 12
Holder Beaver

Commit
ID 12 Commit
Holder Beaver ID 12
Holder Beaver
ID 9 ID 9
Promised 12 Promised 12

Holder Beaver Holder Beaver

ID 12
COMMIT ACCEPTED Promised 12

LOCK NOT GRANTED Holder Beaver

ID 12
Promised 12 [Committed]
Holder Beaver

ID 12
Promised 12
Holder Beaver

[Committed]—@

[Committed]

[Committed]

Lock NOT acquired!
Holder is Beaver.

ID 12
Promised 12
Holder Beaver

ID 12
Promised 12
Holder Beaver

Skinny APls

Consensus API

Skinny APls

e Lock API
o Used by clients to
acquire or release a lock

e Consensus APl
o Used by Skinny
instances to reach
consensus

e Control API
o Used by us to observe
what's happening

Lock API

Control API

client

Lock API

message AcquireRequest { message ReleaseRequest {}

string Holder = 1; message ReleaseResponse {
} bool Released =
message AcquireResponse {

bool Acquired = 1;

string Holder

service Lock {

rpc Acquire(AcquireRequest) returns (AcquireResponse);

rpc Release(ReleaseRequest) returns (ReleaseResponse);

}

client

Consensus API

// Phase 1: Promise

message PromiseRequest {
uint64 ID = 1;

}

message PromiseResponse {
bool Promised = 1;
uintée4 ID = 2;
string Holder = 3;

service Consensus {

// Phase 2: Commit
message CommitRequest {
uint64 ID = 1;
string Holder = 2;
}
message CommitResponse {

bool Committed =

rpc Promise (PromiseRequest) returns (PromiseResponse);

rpc Commit (CommitRequest) returns (CommitResponse);

Control API

message StatusRequest {} service Control {

message StatusResponse { rpc Status(StatusRequest) returns (StatusResponse);

string Name =
uint64 Increment = 2;
string Timeout =
uinté64 Promised
uinte4 ID = 5;
string Holder =
message Peer {
string Name
string Address

}

repeated Peer Peers

e Stamicistal

My Awesome Learning Opportunities

Reaching Out...

// Instance represents a skinny instance

type Instance struct {

Skinny Instance nu sync.RWNMutex

// begin protected fields
e List of peers
o All other instances in the

quorum
o Peer // end protected fields

peers []*peer

o gRPC Client Connection }

o Consensus API Client

type peer struct {
name string
address string
conn *grpc.ClientConn

client pb.ConsensusClient

Propose Function

Send proposal to all peers

Count responses
o Promises

Learn previous
consensus (if any)

for

_, p := range in.peers {

// send proposal

resp, err := p.client.Promise(
context.Background(),
&pb.PromiseRequest{ID: proposal})

if err !'= nil {
continue

}

if resp.Promised {
yea++

}

learn(resp)

Resulting Behavior

e Sequential Requests
e Waiting for IO

count learn

o

Propose P1 Propose P2 Propose P3 Propose P4
t
e Instance slow or down...?
Propose P1 Propose P2 Propose P3 Propose

t

Improvement #1

e Limit the Waiting for IO

Propose P1

Propose P2

Propose P3

Propose P4

cancel

Timeouts

WithTimeout()

o Here: 3 seconds
o Skinny: Configurable

Cancel() to prevent
context leak

for

_, p := range in.peers {

// send proposal

ctx, cancel := context.WithTimeout(
context.Background(),
time.Second*3)

resp, err := p.client.Promise(ctx,

&pb.PromiseRequest{ID: proposal})

cancel()

if err !'= nil {
continue

b

if resp.Promised {

yea++

}

learn(resp)

Improvement #2 (Idea)

e Parallel Requests

Propose P4

Propose P3

Propose P2

Propose P1

_

e \What's wrong?

Improvement #2

e Concurrent Requests
e Synchronized Counting
e Synchronized Learning

Propose P4

Propose P3

Propose P2

Propose P1

_—

p := range in.peers {
// send proposal
Concurrency go func(p *peer) {

ctx, cancel := context.WithTimeout(

Goroutine!

Context with timeout
But how to handle
success?

context.Background(),
time.Second*3)

defer cancel()

resp, err := p.client.Promise(ctx,
&pb.PromiseRequest{ID: proposal})

if err !'= nil { return }

// now what?

+(p)

type response struct {

from string
SynChron|Z|ng promised bool
id uint64

. hold tri
Define response data order sHng

}
structure
: responses := make(chan *response)
Channels to the rescue! i
Write responses to go func(p *peer) {

channel as they come in

responses <- &responseq{
from: p .name,
promised: resp.Promised,
id: resp.ID,
holder: resp.Holder,

+(p)

SynChron|Z|ng // count the votes
yea, nay := 1, 0

e Counting
e yea: =1
o Because we always vote
for ourselves

for r range responses {
// count the promises

if r.promised {

e Learning yea++
} else {
nay++
}

in.learn(r)

What's wrong?

e \We did not close
the channel

e range is blocking
forever

responses := make(chan *response)
for _, p := range in.peers {

go func(p *peer) {

responses <- &response{...}

+(p)

// count the votes
yea, nay := 1, ©
for r := range responses {

// count the promises

in.learn(r)

responses := make(chan *response)
wg := sync.WaitGroup{}
Solutlon More for _, p := range in.peers {
wg.Add(1)

go func(p *peer) {

synchronizing!

defer wg.Done()

e Use WaitGroup
e Close channel when all
requests are done)

responses <- &responseq{...

+(p)

// close responses channel
go func() {
wg.Wait()
close(responses)
+Q)
// count the promises

for r := range responses {...}

Result

Propose P4

Propose P3

Propose P2

Propose P1

B R R

Ignorance |s Bliss?

Early Stopping

Yea:
\)

Majority

Propse P4
Propos@é3

Propose P2

Propose P1

Return

Early Stopping (1)

One context for all
outgoing promises
We cancel as soon as
we have a majority
We always cancel
before leaving the
function to prevent a
context leak

type response struct {
from string
promised bool
id uint64
holder string

}
responses := make(chan *response)
ctx, cancel := context.WithTimeout(

context.Background(),

time.Second*3)

defer cancel()

wg := sync.WaitGroup{}

for _, p := range in.peers {

Early Stopping (2) g Add(1)
go func(p *peer) {
defer wg.Done()

e Nothing new here

resp, err := p.client.Promise(ctx,
&pb.PromiseRequest{ID: proposal})
// ERROR HANDLING. SEE NEXT SLIDE!

responses <- &responseq{
from: p .name,
promised: resp.Promised,
id: resp.ID,
holder: resp.Holder,

+(p)

Early Stopping (3)

We don't care about
cancelled requests
We want errors which
are not the result of a
canceled proposal to
be counted as a
negative answer (nay)
|ater.

For that we emit an
empty response into
the channel in those
cases.

resp, err := p.client.Promise(ctx,

&pb.PromiseRequest{ID: proposal})

if err !'= nil {
if ctx.Err() == context.Canceled {

return

responses <- &response{from: p.name}

return

responses <- &response{...}

Early Stopping (4)

Close responses
channel once all
responses have been
received, failed, or
canceled

go func() {

+()

wg.Wait()

close(responses)

yea, nay :

Early Stopp|ng (5) canceled :

for r := range responses {
if

1, ©

false

-

Count the votes .promised { yea++ } else { nay++ }

Learn previous
consensus (if any)
Cancel all in-flight if lcanceled {

in.learn(r)

proposal if we have if in.isMajority(yea) || in.isMajority(nay) {

reached a majority cancel()
canceled = true

Is this fine?

Timeouts are now even more critical!
"Ghost Quorum" Effect

OO

Ghost Quorum

e Reason: Too tight timeout

e Some instances always time out
o Effectively: Quorum of remaining
instances
e Hidden reliability risk!
o If one of the remaining instances fails, the
distributed lock service is down!
o No majority
o No consensus

The Duel

What's wrong?

retry:
e Retry Logic id := id + in.increment
o Unlimited retries! : . .
promised := in.propose(id)

e Coding Style
o | should care about the
return value.

if !promised {
in.log.Printf("retry (%v)", id)
goto retry

_ = in.commit(id, holder)

Duelling Proposers ;ﬁ_wiﬂ

Soon...

NAME INCREMENT PROMISED ID HOLDER LAST SEEN
london 3 1062520 1062520 _ NOW

oregon connection error
spaulo connection error

sydney 5 1062520 1062520 _ 2 seconds ago
taiwan 4 1062520 1062520 _ 1 second ago

Instances oregon and spaulo were intentionally offline for a different experiment

The Fix

retries := 0
e Retry Counter retry:
e Backoff promised := in.propose()
o Jitter if !promised && retries < 3 {
retries++
backoff := time.Duration(retries) *

2 * time.Millisecond
jitter := time.Duration(rand.Int63n(1000)) *
time.Microsecond
time.Sleep(backoff + jitter)
goto retry

Sources

Further Reading

Reaching Agreement in the Presence of Faults

M. PEASE, R. SHOSTAK, AND L. LAMPORT

SRI International, Menlo Park, California

ABSTRACT. The problem addressed here concerns a set of isolated processors, some unknown subset of which
may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private
value of information that must be communicated to each other nonfaulty processor. Nonfaulty processors always
communicate honestly, whereas faulty processors may lie The problem is to devise an algorithm in which
processors communicate their own values and relay values recerved from others that allows each nonfaulty
processor to infer a value for each other processor The value inferred for a nonfaulty processor must be that
processor’s private value, and the value inferred for a faulty one must be consistent with the corresponding value

https://lamport.azurewebsites.net/pubs/reaching.pdf

https://lamport.azurewebsites.net/pubs/reaching.pdf

Further Reading

/Naming of "Skinny"
absolutely not inspired t
by "Chubby" ;)

We our experiences with the Chubby lock ser-
ich is intended to provide coarse-grained lock-

ilitv_as onnnsed ta hich nerformance Manv

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

example, the Google File System [7] uses a Chubby lock
to appoint a GFS master server, and Bigtable [3] uses
Chubby in several ways: to elect a master, to allow the
master to discover the servers it controls, and to permit
clients to find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion to store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-

https://research.google.com/archive/chubby-0sdi06.pdf

https://research.google.com/archive/chubby-osdi06.pdf

Further Watching

Paxos Agreement - Computerphile

Dr. Heidi Howard

University of Cambridge Computer Laboratory
https://youtu.be/s8JgcZtvnsM

The Paxos Algorithm

Luis Quesada Torres

Google Site Reliability Engineering
Google s quesada Torres https://youtu.be/d7nAGI_NZPk

Senior Software Engineer
Site Reliability Engineering

The Paxos Algorithm

https://youtu.be/d7nAGI_NZPk
https://youtu.be/d7nAGI_NZPk
https://youtu.be/d7nAGI_NZPk
https://youtu.be/s8JqcZtvnsM

Try, Play, Learn!

e The Skinny Lock Server is open source software!

o skinnyd lock server
o skinnyctl control utility

e Terraform modules
e Ansible playbooks

[github.comldanrllskinny

NAME INCREMENT PROMISED HOLDER LAST SEEN
london now
oregon now

spaulo now
sydney now
taiwan now

Find me on Twitter @danrl_com
| blog about SRE and technology: https://danrl.com

