
Implementing
Distributed Consensus

Dan Lüdtke
danrl@google.com

Disclaimer This work is not affiliated with
any company (including Google). This talk is
the result of a personal education project!

What?
● My hobby project of learning about Distributed Consensus

○ I implemented a Paxos variant in Go
○ I learned a lot about how computers reach consensus
○ This talk: A fine selection of some of the mistakes I made

● Language used: Go
○ Code is likely readable for enthusiasts of other languages as well
○ I relied on some Go features, similar features exist in other languages

Distributed Consensus

Same potato!

Protocols
● Paxos

○ Multi-Paxos
○ Cheap Paxos

● Raft

● ZooKeeper Atomic Broadcast
● Proof-of-Work Systems

○ Bitcoin

● Lockstep Anti-Cheating
○ Age of Empires

Implementations
● Chubby

○ coarse grained lock service
● etcd

○ a distributed key value store

● Apache ZooKeeper
○ a centralized service for

maintaining configuration
information, naming, providing
distributed synchronization

Raft Logo: Attribution 3.0 Unported (CC BY 3.0) Source: https://raft.github.io/#implementations
Etcd Logo: Apache 2 Source: https://github.com/etcd-io/etcd/blob/master/LICENSE
Zookeeper Logo: Apache 2 Source: https://zookeeper.apache.org/

https://raft.github.io/#implementations
https://github.com/etcd-io/etcd/blob/master/LICENSE

Paxos

Paxos Roles
● Client

○ Issues request to a proposer
○ Waits for response from a learner

■ Consensus on value X
■ No consensus on value X

● Proposer
● Acceptor
● Learner
● Leader P

client
Consensus
on X?

Paxos Roles
● Client
● Proposer (P)

○ Advocates a client request
○ Asks acceptors to agree on the

proposed value
○ Move the protocol forward when

there is conflict

● Acceptor
● Learner
● Leader

A

A

P

Proposing X...

Proposing X...

client

Paxos Roles
● Client
● Proposer (P)
● Acceptor (A)

○ Also called "voter"
○ The fault-tolerant "memory" of the

system
○ Groups of acceptors form a quorum

● Learner
● Leader

A

A

P

Yea

Yea

client

L
YeaYea

Paxos Roles
● Client
● Proposer (P)
● Acceptor (A)
● Learner (L)

○ Adds replication to the protocol
○ Takes action on learned (agreed

on) values
○ E.g. respond to client

● Leader

A

A

P

client

L

Yea

Paxos Roles
● Client
● Proposer (P)
● Acceptor (A)
● Learner (L)
● Leader (LD)

○ Distinguished proposer
○ The only proposer that can make

progress
○ Multiple proposers may believe to

be leader
○ Acceptors decide which one gets a

majority

A

A

LD

client 2

L

Yea

client 1

P

Coalesced Roles
● A single processors can have

multiple roles
● P+

○ Proposer
○ Acceptor
○ Learner

● Client talks to any processor
○ Nearest one?
○ Leader?

P+

P+

P+

P+

P+

client

Coalesced Roles at Scale
● P+ system is a complete digraph

○ a directed graph in which every pair of
distinct vertices is connected by a pair of
unique edges

○ Everyone talks to everyone

● Let n be the number of processors
○ a.k.a. Quorum Size

● Connections = n * (n - 1)
○ Potential network (TCP) connections

P+

P+

P+

P+

P+

client

Coalesced Roles with Leader
● P+ system with a leader is a directed

graph
○ Leader talks to everyone else

● Let n be the number of processors
○ a.k.a. Quorum Size

● Connections = n - 1
○ Network (TCP) connections

P+

P+

P+

P+

P+

client

Coalesced Roles at Scale

Maximum
quorum size

seen in
“real life”

Limitations
- Single consensus

- Once consensus has been reached no more
progress can be made

- But: Applications can start new Paxos runs

- Multiple proposers may believe to be the
leader

- dueling proposers
- theoretically infinite duel
- practically retry-limits and jitter helps

- Standard Paxos not resilient against
Byzantine failures

- Byzantine: Lying or compromised processors
- Solution: Byzantine Paxos Protocol

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

S
ha

re
 A

lik
e

4.
0

In
te

rn
at

io
na

l b
y

A
sw

in
 K

ris
hn

a
P

oy
il

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Introducing Skinny
● Paxos-based
● Minimalistic
● Educational
● Lock Service

The “Giraffe”, “Beaver”, “Alien”, and “Frame” graphics on the following slides have been released under Creative Commons Zero 1.0 Public Domain License

Skinny "Features"

● Designed to be easy to understand
● Relatively easy to observe
● Coalesced Roles
● Single Lock

○ Locks are always advisory!
○ A lock service does not enforce

obedience to locks.
● Go
● Protocol Buffers
● gRPC
● Do not use in production!

github.com/danrl/skinny

Assuming a wide quorum
● Instances

○ Oregon (North America)
○ São Paulo (South America)
○ London (Europe)
○ Taiwan (Asia)
○ Sydney (Australia)

● Unusual in practice
○ "Terrible latency"

● Perfect for observation and
learning

○ Timeouts, Deadlines, Latency

How Skinny reaches consensus

Lock
please?

SKINNY QUORUM

12

3

4

5

Lock
please?

Proposal
ID 1

ID 0
Promised 0
Holder

ID 0
Promised 0
Holder

ID 0
Promised 0
Holder

ID 0
Promised 0
Holder

ID 0
Promised 1
Holder

Proposal
ID 1

Proposal
ID 1

Proposal
ID 1

PHASE 1A: PROPOSE

12

3

4

5

Promise
ID 1

Promise
ID 1

Promise
ID 1

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

Promise
ID 1

PHASE 1B: PROMISE

12

3

4

5

Commit
ID 1
Holder Beaver

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 0
Promised 1
Holder

ID 1
Promised 1
Holder Beaver

Commit
ID 1
Holder Beaver

Commit
ID 1
Holder Beaver

Commit
ID 1
Holder Beaver

PHASE 2A: COMMIT

12

3

4

5

Lock acquired!
Holder is Beaver.

Committed

ID 1
Promised 1
Holder Beaver

ID 1
Promised 1
Holder Beaver

ID 1
Promised 1
Holder Beaver

ID 1
Promised 1
Holder Beaver

ID 1
Promised 1
Holder Beaver

Committed

Committed

Committed

PHASE 2B: COMMITTED

12

3

4

5

How Skinny deals with
Instance Failure

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

SCENARIO

12

3

4

5

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

TWO INSTANCES FAIL

12

3

4

5

ID 0
Promised 0
Holder

ID 9
Promised 9
Holder Beaver

ID 0
Promised 0
Holder

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

INSTANCES ARE BACK
BUT STATE IS LOST

Lock
please?

12

3

4

5

ID 3
Promised 3
Holder

ID 9
Promised 9
Holder Beaver

ID 0
Promised 0
Holder

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

INSTANCES ARE BACK
BUT STATE IS LOST

Lock
please? Proposal

ID 3

Proposal
ID 3

Proposal
ID 3

Proposal
ID 3

12

3

4

5

ID 3
Promised 3
Holder

ID 9
Promised 9
Holder Beaver

ID 0
Promised 3
Holder

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

PROPOSAL REJECTED

Promise
ID 3

NOT Promised
ID 9
Holder Beaver

NOT Promised
ID 9
Holder Beaver

NOT Promised
ID 9
Holder Beaver

12

3

4

5

ID 9
Promised 12
Holder Beaver

ID 9
Promised 9
Holder Beaver

ID 0
Promised 3
Holder

ID 9
Promised 9
Holder Beaver

ID 9
Promised 9
Holder Beaver

START NEW PROPOSAL
WITH LEARNED VALUES

Proposal
ID 12

Proposal
ID 12

Proposal
ID 12

Proposal
ID 12

12

3

4

5

ID 9
Promised 12
Holder Beaver

ID 9
Promised 12
Holder Beaver

ID 0
Promised 12
Holder

ID 9
Promised 12
Holder Beaver

ID 9
Promised 12
Holder Beaver

PROPOSAL ACCEPTED

Promise
ID 12

Promise
ID 12

Promise
ID 12

Promise
ID 12

12

3

4

5

ID 12
Promised 12
Holder Beaver

ID 9
Promised 12
Holder Beaver

ID 9
Promised 12
Holder

ID 9
Promised 12
Holder Beaver

ID 9
Promised 12
Holder Beaver

COMMIT LEARNED VALUE

Commit
ID 12
Holder Beaver

Commit
ID 12
Holder Beaver

Commit
ID 12
Holder Beaver

Commit
ID 12
Holder Beaver

12

3

4

5

ID 12
Promised 12
Holder Beaver

ID 12
Promised 12
Holder Beaver

ID 12
Promised 12
Holder Beaver

ID 12
Promised 12
Holder Beaver

ID 12
Promised 12
Holder Beaver

COMMIT ACCEPTED
LOCK NOT GRANTED

Committed

Committed

Committed Committed

Lock NOT acquired!
Holder is Beaver. 12

3

4

5

Skinny APIs

Skinny APIs

● Consensus API
○ Used by Skinny

instances to reach
consensus

client

Consensus API

admin

Lock API

Control API

● Lock API
○ Used by clients to

acquire or release a lock

● Control API
○ Used by us to observe

what's happening

Lock API
message AcquireRequest {

 string Holder = 1;

}

message AcquireResponse {

 bool Acquired = 1;

 string Holder = 2;

}

message ReleaseRequest {}

message ReleaseResponse {

 bool Released = 1;

}

service Lock {

 rpc Acquire(AcquireRequest) returns (AcquireResponse);

 rpc Release(ReleaseRequest) returns (ReleaseResponse);

}

client

admin

Consensus API
// Phase 1: Promise

message PromiseRequest {

 uint64 ID = 1;

}

message PromiseResponse {

 bool Promised = 1;

 uint64 ID = 2;

 string Holder = 3;

}

// Phase 2: Commit

message CommitRequest {

 uint64 ID = 1;

 string Holder = 2;

}

message CommitResponse {

 bool Committed = 1;

}

service Consensus {

 rpc Promise (PromiseRequest) returns (PromiseResponse);

 rpc Commit (CommitRequest) returns (CommitResponse);

}

Control API
message StatusRequest {}

message StatusResponse {

 string Name = 1;

 uint64 Increment = 2;

 string Timeout = 3;

 uint64 Promised = 4;

 uint64 ID = 5;

 string Holder = 6;

 message Peer {

 string Name = 1;

 string Address = 2;

 }

 repeated Peer Peers = 7;

}

service Control {

 rpc Status(StatusRequest) returns (StatusResponse);

}

admin

 My Stupid Mistakes
My Awesome Learning Opportunities

Reaching Out...

// Instance represents a skinny instance

type Instance struct {

 mu sync.RWMutex

 // begin protected fields

 ...

 peers []*peer

 // end protected fields

}

type peer struct {

 name string

 address string

 conn *grpc.ClientConn

 client pb.ConsensusClient

}

Skinny Instance
● List of peers

○ All other instances in the
quorum

● Peer
○ gRPC Client Connection
○ Consensus API Client

for _, p := range in.peers {

 // send proposal

 resp, err := p.client.Promise(

 context.Background(),

 &pb.PromiseRequest{ID: proposal})

 if err != nil {

 continue

 }

 if resp.Promised {

 yea++

 }

learn(resp)

}

Propose Function
1. Send proposal to all peers
2. Count responses

○ Promises

3. Learn previous
consensus (if any)

Resulting Behavior
● Sequential Requests
● Waiting for IO

Propose P1

count

Propose P2 Propose P3 Propose P4

● Instance slow or down...?

Propose P1 Propose P2 Propose P3 Propose P4 Propose P5

t

t

learn

Improvement #1
● Limit the Waiting for IO

Propose P1 Propose P2 Propose P3 Propose P4

tcancel

for _, p := range in.peers {

 // send proposal

 ctx, cancel := context.WithTimeout(

 context.Background(),

 time.Second*3)

 resp, err := p.client.Promise(ctx,

 &pb.PromiseRequest{ID: proposal})

 cancel()

 if err != nil {

 continue

 }

 if resp.Promised {

 yea++

 }

learn(resp)

}

Timeouts
● WithTimeout()

○ Here: 3 seconds
○ Skinny: Configurable

● Cancel() to prevent
context leak

Improvement #2 (Idea)

● Parallel Requests

Propose P1

Propose P2

Propose P3

Propose P4

t
● What's wrong?

Improvement #2

● Concurrent Requests
● Synchronized Counting
● Synchronized Learning

Propose P1

Propose P2

Propose P3

Propose P4

t

for _, p := range in.peers {

 // send proposal

 go func(p *peer) {

 ctx, cancel := context.WithTimeout(

 context.Background(),

 time.Second*3)

 defer cancel()

 resp, err := p.client.Promise(ctx,

 &pb.PromiseRequest{ID: proposal})

 if err != nil { return }

 // now what?

 }(p)

}

Concurrency
● Goroutine!
● Context with timeout
● But how to handle

success?

type response struct {

 from string

 promised bool

 id uint64

 holder string

}

responses := make(chan *response)

for _, p := range in.peers {

 go func(p *peer) {

 ...

 responses <- &response{

 from: p.name,

 promised: resp.Promised,

 id: resp.ID,

 holder: resp.Holder,

 }

 }(p)

}

Synchronizing
● Define response data

structure
● Channels to the rescue!
● Write responses to

channel as they come in

// count the votes

yea, nay := 1, 0

for r := range responses {

 // count the promises

 if r.promised {

 yea++

 } else {

 nay++

 }

in.learn(r)

}

Synchronizing
● Counting
● yea := 1

○ Because we always vote
for ourselves

● Learning

responses := make(chan *response)

for _, p := range in.peers {

 go func(p *peer) {

 ...

 responses <- &response{...}

 }(p)

}

// count the votes

yea, nay := 1, 0

for r := range responses {

 // count the promises

 ...

in.learn(r)

}

What's wrong?
● We did not close

the channel
● range is blocking

forever

responses := make(chan *response)

wg := sync.WaitGroup{}

for _, p := range in.peers {

 wg.Add(1)

 go func(p *peer) {

 defer wg.Done()

 ...

 responses <- &response{...}

 }(p)

}

// close responses channel

go func() {

 wg.Wait()

 close(responses)

}()

// count the promises

for r := range responses {...}

Solution: More
synchronizing!

● Use WaitGroup
● Close channel when all

requests are done

Result

Propose P1

Propose P2

Propose P3

Propose P4

t

Ignorance Is Bliss?

Early Stopping

Propose P1

Propose P2

Propose P3

Propose P4

tReturn

Yea:

Majority

type response struct {

 from string

 promised bool

 id uint64

 holder string

}

responses := make(chan *response)

ctx, cancel := context.WithTimeout(

 context.Background(),

 time.Second*3)

defer cancel()

Early Stopping (1)
● One context for all

outgoing promises
● We cancel as soon as

we have a majority
● We always cancel

before leaving the
function to prevent a
context leak

wg := sync.WaitGroup{}

for _, p := range in.peers {

 wg.Add(1)

 go func(p *peer) {

 defer wg.Done()

 resp, err := p.client.Promise(ctx,

 &pb.PromiseRequest{ID: proposal})

 ... // ERROR HANDLING. SEE NEXT SLIDE!

 responses <- &response{

 from: p.name,

 promised: resp.Promised,

 id: resp.ID,

 holder: resp.Holder,

 }

 }(p)

}

Early Stopping (2)
● Nothing new here

 resp, err := p.client.Promise(ctx,

 &pb.PromiseRequest{ID: proposal})

 if err != nil {

 if ctx.Err() == context.Canceled {

 return

 }

 responses <- &response{from: p.name}

 return

 }

 responses <- &response{...}

 ...

Early Stopping (3)
● We don't care about

cancelled requests
● We want errors which

are not the result of a
canceled proposal to
be counted as a
negative answer (nay)
later.

● For that we emit an
empty response into
the channel in those
cases.

go func() {

 wg.Wait()

 close(responses)

}()

Early Stopping (4)
● Close responses

channel once all
responses have been
received, failed, or
canceled

yea, nay := 1, 0

canceled := false

for r := range responses {

 if r.promised { yea++ } else { nay++ }

 in.learn(r)

 if !canceled {

 if in.isMajority(yea) || in.isMajority(nay) {

 cancel()

 canceled = true

 }

 }

}

Early Stopping (5)
● Count the votes
● Learn previous

consensus (if any)
● Cancel all in-flight

proposal if we have
reached a majority

Is this fine?
● Timeouts are now even more critical!
● "Ghost Quorum" Effect

Ghost Quorum
● Reason: Too tight timeout
● Some instances always time out

○ Effectively: Quorum of remaining
instances

● Hidden reliability risk!
○ If one of the remaining instances fails, the

distributed lock service is down!
○ No majority
○ No consensus

The Duel

What's wrong?
● Retry Logic

○ Unlimited retries!

● Coding Style
○ I should care about the

return value.

...

retry:

id := id + in.increment

promised := in.propose(id)

if !promised {

 in.log.Printf("retry (%v)", id)

 goto retry

}

...

_ = in.commit(id, holder)

...

Duelling Proposers

Lock
please?Lock

please?

Proposal
ID 1

Proposal
ID 2

Proposal
ID 3

Proposal
ID 4

Proposal
ID 5

Proposal
ID 6

Proposal
ID 7

Proposal
ID 8

Proposal
ID 9

Proposal
ID 10

Proposal
ID 11

Proposal
ID 12

Proposal
ID 13

Proposal
ID 14

Proposal
ID 15

Soon...

Instances oregon and spaulo were intentionally offline for a different experiment

The Fix
...

retries := 0

retry:

promised := in.propose()

if !promised && retries < 3 {

 retries++

 backoff := time.Duration(retries) *

 2 * time.Millisecond

 jitter := time.Duration(rand.Int63n(1000)) *

 time.Microsecond

 time.Sleep(backoff + jitter)

 goto retry

}

...

● Retry Counter
● Backoff
● Jitter

Sources

Further Reading

https://lamport.azurewebsites.net/pubs/reaching.pdf

https://lamport.azurewebsites.net/pubs/reaching.pdf

Further Reading

https://research.google.com/archive/chubby-osdi06.pdf

Naming of "Skinny"
absolutely not inspired
by "Chubby" ;)

https://research.google.com/archive/chubby-osdi06.pdf

Further Watching

The Paxos Algorithm
Luis Quesada Torres
Google Site Reliability Engineering
https://youtu.be/d7nAGI_NZPk

Paxos Agreement - Computerphile
Dr. Heidi Howard
University of Cambridge Computer Laboratory
https://youtu.be/s8JqcZtvnsM

https://youtu.be/d7nAGI_NZPk
https://youtu.be/d7nAGI_NZPk
https://youtu.be/d7nAGI_NZPk
https://youtu.be/s8JqcZtvnsM

Try, Play, Learn!
● The Skinny Lock Server is open source software!

○ skinnyd lock server
○ skinnyctl control utility

● Terraform modules
● Ansible playbooks

Find me on Twitter @danrl_com
I blog about SRE and technology: https://danrl.com

github.com/danrl/skinny

