
“Disorganizing” your
SRE organization
Leonid Belkind

CTO and co-founder, StackPulse

“Disorganization can scarcely fail
to result in efficiency”

Dwight D. Eisenhower

1. The impacts of WFH on the teams responsible for reliability

2. How we ‘disorganized’ the SRE team to address

3. Lessons learned along the way

4. Suggested ‘Action Items’

What I’m going to talk about today
Agenda

➔ The agility and innovation in how we build and ship
software has Increased velocity and fragmented knowledge

➔ Roles like SRE, collaboration tools like Slack,
Confluence/Notion, and “shift-left” tooling that allows
developers to build, test, deploy and monitor software
services are widely adopted

➔ When WFH became the new normal - this status quo was
no longer enough

What were our challenges?
The state of the world

62% of IT and DevOps practitioners
are spending 10 additional hours a
week on incidents since COVID

The state of the world

Source: PagerDuty

https://www.pagerduty.com/newsroom/pagerduty-survey-pressure-digital-services-2020/

Over 80% of SREs spend over half
their time on operations - not
engineering.

The state of the world

Source: Catchpoint

https://f.hubspotusercontent30.net/hubfs/5595333/Catchpoint-SRE-Report-2020.pdf

➔ Training / Onboarding team members in a growing team

➔ Dealing with Increased Noise in a service with growing adoption

➔ Limited informal communication

Our Journey: Biggest Challenges
The state of the world

What does “disorganizing” the SRE
organization mean?

Disorganizing the SRE organization

1. Democratize responsibility to all
engineers

2. Empower autonomous but
consistent action

Disorganizing the SRE organization

➔ Treat reliability like a feature and build for it in every task

➔ Train developer teams on monitoring/alerting, observability,
error budgets, SLOs and incident response metrics like MTTD
/MTTR

➔ Make every developer part of on-call work – leadership too

Democratizing responsibility
Disorganizing the SRE organization

➔ People handling incidents should feel empowered to have all
the relevant data and to take relevant remediation steps

➔ It is much easier to ask for help when you are in a room with
people, not so easy to reach out remotely

➔ When Slacking / Zooming with people, it is harder to
understand their underlying intentions / mood

➔ “Remote” collaboration should be about tasks / facts / findings

Empowering Autonomy and consistency - Why
Disorganizing the SRE organization

➔ Build playbooks for every workflow – never do the same thing
manually twice

➔ Turn on-call / incident response into deterministic code –make
available as “modules” to developers

➔ Common language and format for all playbooks – no exceptions

➔ Educate and train team with playbook artifacts vs. wiki articles

Empowering Autonomy and consistency - How
Disorganizing the SRE organization

➔ Declarative playbooks/workflows
➔ Encapsulated process steps
➔ Four parts to each:

◆ Enrich – append environment and
application context, asses customer
impact and assign severity

◆ Triage – rule out possible causes, focus
on suspicious signals

◆ Communicate – open war rooms,
create/update incidents, communicate
with on-callers / stakeholders

◆ Remediate – bring the service
environment back to operating state

What does “turn into code” look like for us?
Disorganizing the SRE organization

Our Journey: Getting Started
Disorganizing the SRE organization

• 1 Month: On-call and playbook
writing spread across developers

• 3 Months: Weekly review of
incidents and their resolution
metrics, outlining missing pieces
and scheduling their
development

etiquette

Our biggest lessons learned were
about the human part of the process

Lessons Learned

1. Accept the new normal
2. Build to the individual
3. Explicitly build culture
4. Terminate loops locally

Lessons Learned

➔ Trying to ‘keep everyone in the room’ with Slack, Zoom, Discord doesn’t
work.

➔ Increased fatigue, poor responsiveness, low morale

Accept the new normal
Lessons Learned

➔ People have different preferences for interruptions, privacy,
communication style

➔ Work with individuals to find what’s right for them

➔ Balance critical need with personal preference

Build to individual need
Lessons Learned

➔ Directly share that you’re working on culture as a project

➔ Define changes in day-to-day responsibilities

➔ Build opportunities for informal interaction that use different formats

Explictly build a new culture
Lessons Learned

culture

➔ Re-divide responsibilities

➔ Empower with playbooks as documentation

➔ “4 eyes” verification only for critical issues

➔ Measure performance, share with the team

Terminate loops locally
Lessons Learned

Our Journey: 6 Months In
Lessons Learned

➔ Enrichment, RCA over 60%
automated

➔ MTTR reduced by 35%
➔ Playbooks used to manage

incidents from create to
post-mortem.

➔ Over half the team has led
incident response

1. Be open with your teams. Explicitly explain that the
organization is embarking on a journey (to change its culture)

2. Identify individuals that are passionate about it and involve
them in leading the efforts

3. Let the teams drive choices of automation tools.
Technologists enjoy solving problems with tools much more
than they do with manual processes. Tools do matter

4. Don’t assume that people will tell you how they feel or how
confident they are. Constantly monitor the “soft” metrics

Suggested “Action Items”

Thoughts on how to get started

Thank
You!
Questions?
leonid@stackpulse.com

mailto:leonid@stackpulse.com

