(Network) Load Balancmg
Building Blocks

Kyle Lexmond

Traffic Applications, Seattle
SRECon EMEA 2019 - Oct 342019
Twitter: @lightweavr

:
J
/ A
o 7/
KL
A
ey /y:vf/
e 4

" facebook
A -k;., INFRASTRUCTURE

\ . » N
N . e WY
| ¢ KN, - 7 f‘\\
»/ T 7 « * N
\ . ,/J‘o -+ L \\ T,,-,,.
VKA XH P = 2\ 24
<% 7/ » b & f/
"> 7, * \ & Y NY
»— '\/ v * . f‘.
AR AR 3} —.0 \ P / SN
P - 7
& '\I é,/‘

=

* Traffic Applications Production Engineer
* Reliability

* Hardware

* Deployments

Traffic @ FB Architecture

* Configuration

* Matters because all bytes for Facebook,
Instagram, WhatsApp flow through our
services

* Introduction to network load balancers
* Know what classes of load balancer is
Ta keaways appropriate for common usecases

* Know some attributes of network

architecture at scale

* Why Load Balance?

’ * L4/L7 Load Balancers
What we’ll N | |
 Directing clients to different locations

cover * Utility of POPs

* Global load balancing
* Maglev Load Balancers

Glimpse behind the curtain

Stack of Loadbalancers

Why Load Balance?

Load Balance because...

* Have too many requests for a single server to handle
 Defending against the failure of an individual server
* Want to be able to gracefully add and remove capacity

* ... without service interruption

* Intelligently control where traffic gets directed

“Proxy” L4/L7 Load Balancers

Single point of failure

Active/Passive

Ready to failover

How?

* Healthchecks the backends
* Incoming connections (usually) routed to same backend

* Backend failure will get existing connections TCP reset

* New connections don’t get sent there

Difference is the OSI layer

* L4: transport and network protocol
* Individual packets
* L7:application protocol

* Requests

L7: Application

L6: Presentation

L5: Session

L4: Transport

History

* L4 because CPU bottleneck before network

CPUs got better faster than networks

* Increased CPU power allowed L7 features

e Network is the bottleneck now

* Stack Overflow architecture (link)

https://nickcraver.com/blog/2016/02/17/stack-overflow-the-architecture-2016-edition/

Where are we?

41 ", -

BEREEE
EELSE

RiBid D

il T T T

EBLEBELLE LR RL

UERREE; s

(V- ;=

il a = "
s | |7 | 3 "
g H—=x Il > =
m ~—Vi .

<
+ |
= T
=

|

,~
i

-

FLEFHEFFFEFAT

il

|

S —
L' - —
T
—
-
Yoo

i/

CLEe

Getting to the datacenters

Where are we?

DNS Flavours

* Round robin DNS

* Multiple servers for one domain

* Anycast DNS

* One IP, shared across multiple locations

* Routed by the intermediate networks

Even More DNS Flavours

* Geoaware DNS

* Records specific to geographical areas
* Network aware DNS

* Records specific to peering/networks the user is connected to

* Latency aware DNS

* Records specific to the latency from the user to datacenter

Problems with DNS

* Caching
* Multiple devices along the request path
» Short TTL expiry doesn’t fix everything
 Traffic imbalance

* Anycast routing not always optimal

* Eg Twitter’s experience (link)

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/expand-the-edge.html

Problems with DNS

* Limited information

* Recursive resolver doesn’t pass data on
* EDNS client subnet RFC as a solution

* But... not always following it

Steering users

* None of these decisions have to be made once and only once
* Initial target can be best guess

* Everything past the initial connection is based on what you send

e TCP connection has the user’s address

Data sources

* Geo IP data
* Peering databases

* Latency measurements

DIY latency measurement

* Fraction of profile pictures are loaded from random location
* DNS logs (unique record, resolver address)
* Webserver logs (unique record, latency measurements)

 Join to get (resolver address, latency measurements)

* More details: Sonar @ APNIC 44 talk (link)

https://www.slideshare.net/apnic/being-open-how-facebook-got-its-edge

féeec677a80kdno4pyg-
sonar.xz.fbcdn.net 2¢?

féeec677a80kdno4pyg-
sonar.xz.fbcdn.net 2¢?

DNS

Resolver

féeec677a80kdno4pyg-
sonar.xz.fbcdn.net ?2?

DNS

Resolver
172.21.157.1

172.21.157.1: f6eec677a80kdno4pyg-
sonar.xz.fbcdn.net

172.21.156.201

192.168.124.7
DNS

192.168.124.1
Resolver

<

DNS

Resolver

GET féeec677a80kdno4pyg-
sonar.xz.fbcdn.net

DNS

Resolver

GET féeec677a80kdno4pyg-
sonar.xz.fbcdn.net

féeec677a80kdno4pyg-sonarxz.fbcdn.net: 150ms

172.21.157.1: f6eec677a80kdno4dpyqg-sonar.xz.fbcdn.net

f6eec677a80kdnodpyg-sonarxz.fbcdn.net: 150ms

¥

172.271.157.1: 150ms

T
I Sayey® PovOvT wU._

Points of Presence (POPs)

Where are we?

Why PoPs

* PoPs are useful for more than CDNSs

* Static vs Dynamic content

* Less complex than an entire new region because it only serves web

traffic

Static vs Dynamic

* Static
* Easily cacheable
* Not changing between users
* Video, pictures
* Dynamic
* Per-user customizations

* Messenger chats

Typical CDN: Static Content + Fallback

If not in cache, fallback to
datacenter

Dynamic Content

Straight to the datacenter...

Saves time, right?

Seoul -> Oregon

Round trip:

established:

150 ms

LS session
established:

/75ms
SYN

SYN+ACK

M
ClientHello

M
ChangeCipherSpec

ChangeCipherSpec
M

Seoul -> Narita -> Oregon

NRT Round Trip:
NRT <-> Oregon:

15ms

Sessions
established:

GET

60ms

HTTP 1.1 200

] |l T2e e L LLLLED N
m,agww . %gﬁn. w .w ié m..ww.,.\.

7V gitiny

% e u.‘ B T
B G
AU g ot 0l il e Fea ey e e . TR T T T AUl L T

T duahlladehetabobilu b S & RS UEEMMARIAADY

9 T E b 4

et

=

Y z - 2
wd Sl NG b

b s VI . [T

Global Load Balancing

Why is it useful?

* 1.5 billion daily active users

* Network has to account for special events

« Can’t autoscale fiber laying

* How do we send users to available capacity?

Requests exceed capacity

Capacity

Requests Per Second

24 hours

Cartographer

* Look at what a specific PoP/DC can handle.

* Direct traffic to the PoP/DC until it approaches the capacity limit

* Divert excess traffic elsewhere, continue serving up to the limit

* When requests go down, stop diverting

Use non-optimal unused capacity elsewhere

Capacity *a®

Requests Per Second

24 hours

;
\%

24
f

i
iy v“\

o

\/
g
5ﬁ
R,

. .

e ." il
- T a

NERR

B0

R

- TN
vt = -
= = \ 2 - . -
- ’. = o — jﬂ// — e
/_“' - = _— - % = : -
— Py - - e
T o —— - | .
ol -0] - *
e —— » e : "

I L AVAA) Wb LRVARVRR =
) \Q
e

j— f
) — \ ;
Dl wiiitll ~ e -0 »e .
’.? = ‘i;jv_‘}::\ y
)] ==) L) PSS =
4, = B m— |
e 7 2 e - - \ ~
4 -
~ — T . LU

)

W bpry ey
?

(4 (5.8 [5

11! o s — w0
S — |
1 i b P - R -) y — =
& . > - :
- 3 = R} J = | ”‘3,
I] | (~Wr R D2 N e
| s &\ J |G aea I &
.: “'r | b i S & w -
| 1A = ~ - i . ‘ _
I o : 5 : 2(r r
I 3% = |
>~
| L
‘ =
' ‘ b

AA

MaglLev Load Balancers

What.

* Name from Google paper

* An answer to “How do you spread packets for a single IP across
multiple load balancers while making sure the flow ends up at the

same backend machine”

Where are we?

Multiple machines

ggregated into
single virtual LB

©

I
l
I
= |

/

/
:&«QM\ —

7

PR/
: sﬂ%«ﬁ“\\\

_ oL A
W Vs
)/ /«e@@/d‘ 7 i

TN

4

A
AN

«///\\ wwwwwwww
! JTT,

F_____

Semi-arbitrarily decides

which load balancer
member to send it to

1
«\\\\\\ WWWWWWWW

‘

- d

SN
Y VS

N\

-

¢

Why not just use the first layer?

Why is stability needed?

* Adding or removing capacity shouldn’t induce a reshuffling of
where packets ultimately get sent

e TCP is stateful

* Need to end up at the same backend server

Why is stability needed?

* Adding or removing capacity shouldn’t induce a reshuffling of
where packets ultimately get sent

e TCP is stateful

* Need to end up at the same backend server

* Goal: Keep sending the same flow to the same backend
host, regardless of what network path it takes

Agnostic, next hop doesn’t

matter

]

Next hop should be the

D)

o
m%mC

D)
+&Ww.
Dl..qw.o
O & Ao
&5 ©

same backend regardless of
what machine got the packet

v/ /

I ,

40—
a\w,

\
\

R

P.
e

<

[osioi]
L_imes il

Lt
(AR i

Gl H

b [

=\

e %~\

Wf ‘.‘
{
e

(% (A7) (8
o

i

i\

(e

R

R

A g,

i

i
- JMWW}

Ly v
v M

2

vl ¥

=
-sw
~am-

s

{

Al
)
L /|

kL L
gy

i
il

“192.168.1.1 is here”

\.N\\\\ \\\\\\\\

|_|

i ———

OANP
Y

Y

Ny
\\»%M/@“ ’

“192.168.1.1 is here”

Are you healthy?

all

L1 —

_\mﬁﬁﬁw\ 07777
W
3»»@“‘

/0 w@& ’

A

___*_______ e mm -

L

Y
AN 7/

Healthchecks are simple but Backend Healthy

requent 10.1.0.1 YES
10.1.0.2 YES
10.1.0.3 YES
10.1.0.4 NO
10.1.0.5 YES
10.1.0.6 YES

10.1.0.7 YES

“192.168.1.1 is here”

Are you healthy?

\\\A\,\\ T,

) —

.“NQ,»//‘

/

___*_______ e mm -

S 77
>
\\N%M/@»

Daxlsracd
Backend
10.1.0.1

YES
YES
YES

10.1.0.2

10.1.0.3

NO
YES
YES
YES

Healthy
YES

Backend
10.1.0.1

\\\\\\ //k@%’ ‘\

Q
0

/

Y
N
N®.//

YES
YES
NO

10.1.0.2

10.1.0.3

t

A
//

10.1.0.7

10.1.0.4
10.1.0.5
10.1.0.6
10.1.0.7

LY 3

¥

- - .
- % ke - - : 4
- Y /A - “.* .."
. . . w
slly
¥ - b P >

LN
4
o N
N <
— N
O
~N ™
® O
Y o —
v O
a1
o
Y %
n QO

e

TCP

Super important data

Proto

Packet

162.8.7.6:12345

Src
Dst

1.2.3.4:443

TCP

Super important data

Proto

1.2.3.4is on 4 paths, I'll choose

4
Q
wnm

=2

e

i)
L
O

4

=2

N

o

N

—

of backends...

4
Q
wnm

=2

e

i)
L
O

4

=2

N

o

N

—

of backends...

It’s not in my LRU
cache, recalculate

the hash

D

wn Um

R X ©

S . <5 9
C 4 >0 -
ST ETF a0
.Be.mmmM%
ktaauuu
A_..COehOA.
3anh hO
10“Ct|

New headers!

Src 2604::42:12345

Dst 2604::ae:443
Proto TCP

Src 162.8.7.6:12345

Dst 1.2.3.4:443
Proto TCP

Super important data

»)

2604::ae:443
TC
162.8.7.6:12345

2604::42:12345
1.2.3.4:443
TCP

Packet
Super important data

Src
Dst
Proto
Src
Dst
Proto

2604::ae
1.2.3.4

Packet

Src 2604::42:12345

Dst 2604::ae:443
Proto TCP

Src 162.8.7.6:12345

Dst 1.2.3.4:443
Proto TCP

Super important data

2604::ae
1.2.3.4

Packet

Src 162.8.7.6:12345
Dst 1.2.3.4:443
Proto TCP

Super important data

2604::ae
1.2.3.4

Packet

Src 162.8.7.6:12345
Dst 1.2.3.4:443
Proto TCP

Super important data

2604::ae
1.2.3.4

Packet

Src 1.2.3.4:443
Dst 162.8.7.6:12345
Proto TCP

Super important data

\\ ,N\\\\I“

;M .\W/ AL IRE TNE TRES Y
k) s ,,ﬂhﬂ O P
\
/ i 1 M i ;
\
R . - -
h .ﬂ\, . nig = ;
\ ./_,.,
a &

Where are we?

K/
ﬂ/«&\w&\%\\ i

\\k."%e\\rﬁ\\.\\
A0%
e /i
SO /A _

AT A/

y ?)’/4‘ 9] T

R Hilii

/O A\ .
AN

@\i

1.2.3.4 is for this set

of backends...
— |t’s not in my LRU

cache, recalculate

the hash

D

wn Um

A2 X ©

S <15 9
C 4 >0 -
ST EQ
.Be.mmuﬁwmw
ktaauuu
A_..COehOA.
3anh hO
‘IonCtl

«/‘\Q\\\\\\“\
/......ﬁ\ ,,,,,,,,
KO
M —
H0N

AR O\ —

AN

_ 7 u_ PO

F16

F16

HGRID

F16

F16

https://engineering.fb.com/data-center-engineering/f16-minipack/

https://engineering.fb.com/data-center-engineering/f16-minipack/

Differences with ‘standard’ L4

* Remove a single point of failure

* Replaced with requirement to keep backend state roughly in
common

* Invasive changes to network

* Network needs to support multiple machines announcing same IP

* Backend systems need to add same IP on loopback

Special sauce

* Katran on github - facebookincubator/katran

* eBPF + eXpress Data Path means packets get processed as early as

possible

* Open sourcing blog post (link) + conference talk (link)

https://github.com/facebookincubator/katran
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.facebook.com/atscaleevents/videos/2090080137931746/

Comparison

* Many L7 Load Balancers

* Maintain IPs and DNS records for each?

* DNS

* Maglev reacts quicker to a dead L7

Putting it together

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

What happens when | type “facebook.com” and hit enter

* Introduction to network load balancers
 Know what classes of load balancer is
Wra ppi ng u p appropriate for common usecases
 Know some attributes of network

architecture at scale

facebook Thank You

