(Network) Load Balancmg
Building Blocks

Kyle Lexmond

Traffic Applications, Seattle
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* Traffic Applications Production Engineer
* Reliability

* Hardware

* Deployments

Traffic @ FB Architecture

*  Configuration

* Matters because all bytes for Facebook,
Instagram, WhatsApp flow through our
services




* Introduction to network load balancers
* Know what classes of load balancer is
Ta keaways appropriate for common usecases

* Know some attributes of network

architecture at scale




*  Why Load Balance?

’ * L4/L7 Load Balancers
What we’ll N | |
 Directing clients to different locations

cover *  Utility of POPs

* Global load balancing
*  Maglev Load Balancers




Glimpse behind the curtain



Stack of Loadbalancers




Why Load Balance?




Load Balance because...

* Have too many requests for a single server to handle
 Defending against the failure of an individual server
* Want to be able to gracefully add and remove capacity

* ... without service interruption

* Intelligently control where traffic gets directed



“Proxy” L4/L7 Load Balancers




Single point of failure




Active/Passive

Ready to failover




How?

* Healthchecks the backends
* Incoming connections (usually) routed to same backend

* Backend failure will get existing connections TCP reset

* New connections don’t get sent there



Difference is the OSI layer

* L4: transport and network protocol
* Individual packets
* L7:application protocol

* Requests

L7: Application

L6: Presentation

L5: Session

L4: Transport




History

* L4 because CPU bottleneck before network

CPUs got better faster than networks

* Increased CPU power allowed L7 features

e Network is the bottleneck now

* Stack Overflow architecture (link)


https://nickcraver.com/blog/2016/02/17/stack-overflow-the-architecture-2016-edition/

Where are we?
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Getting to the datacenters




Where are we?




DNS Flavours

* Round robin DNS

* Multiple servers for one domain

* Anycast DNS

* One IP, shared across multiple locations

* Routed by the intermediate networks



Even More DNS Flavours

* Geoaware DNS

* Records specific to geographical areas
* Network aware DNS

* Records specific to peering/networks the user is connected to

* Latency aware DNS

* Records specific to the latency from the user to datacenter



Problems with DNS

* Caching
* Multiple devices along the request path
» Short TTL expiry doesn’t fix everything
 Traffic imbalance

* Anycast routing not always optimal

* Eg Twitter’s experience (link)


https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/expand-the-edge.html

Problems with DNS

* Limited information

* Recursive resolver doesn’t pass data on
* EDNS client subnet RFC as a solution

* But... not always following it



Steering users

* None of these decisions have to be made once and only once
* Initial target can be best guess

* Everything past the initial connection is based on what you send

e TCP connection has the user’s address



Data sources

* Geo IP data
* Peering databases

* Latency measurements



DIY latency measurement

* Fraction of profile pictures are loaded from random location
* DNS logs (unique record, resolver address)
* Webserver logs (unique record, latency measurements)

 Join to get (resolver address, latency measurements)

* More details: Sonar @ APNIC 44 talk (link)


https://www.slideshare.net/apnic/being-open-how-facebook-got-its-edge

féeec677a80kdno4pyg-
sonar.xz.fbcdn.net 2¢?

féeec677a80kdno4pyg-
sonar.xz.fbcdn.net 2¢?

DNS

Resolver




féeec677a80kdno4pyg-
sonar.xz.fbcdn.net ?2?

DNS

Resolver
172.21.157.1

172.21.157.1: f6eec677a80kdno4pyg-
sonar.xz.fbcdn.net

172.21.156.201




192.168.124.7
DNS

192.168.124.1
Resolver

<




DNS

Resolver

GET féeec677a80kdno4pyg-
sonar.xz.fbcdn.net



DNS

Resolver

GET féeec677a80kdno4pyg-
sonar.xz.fbcdn.net

féeec677a80kdno4pyg-sonarxz.fbcdn.net: 150ms



172.21.157.1: f6eec677a80kdno4dpyqg-sonar.xz.fbcdn.net

f6eec677a80kdnodpyg-sonarxz.fbcdn.net: 150ms

¥

172.271.157.1: 150ms
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Points of Presence (POPs)




Where are we?




Why PoPs

* PoPs are useful for more than CDNSs

* Static vs Dynamic content

* Less complex than an entire new region because it only serves web

traffic



Static vs Dynamic

* Static
* Easily cacheable
* Not changing between users
* Video, pictures
* Dynamic
* Per-user customizations

* Messenger chats



Typical CDN: Static Content + Fallback

If not in cache, fallback to
datacenter




Dynamic Content

Straight to the datacenter...

Saves time, right?




Seoul -> Oregon

Round trip:




established:

150 ms

LS session
established:

/75ms
SYN

SYN+ACK

M
ClientHello

M
ChangeCipherSpec

ChangeCipherSpec
M




Seoul -> Narita -> Oregon

NRT Round Trip:
NRT <-> Oregon:




15ms

Sessions
established:

GET

60ms

HTTP 1.1 200
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Global Load Balancing



Why is it useful?

* 1.5 billion daily active users

* Network has to account for special events

« Can’t autoscale fiber laying

* How do we send users to available capacity?



Requests exceed capacity

Capacity

Requests Per Second

24 hours



Cartographer

* Look at what a specific PoP/DC can handle.

* Direct traffic to the PoP/DC until it approaches the capacity limit

* Divert excess traffic elsewhere, continue serving up to the limit

* When requests go down, stop diverting



Use non-optimal unused capacity elsewhere

Capacity *a®

Requests Per Second

24 hours
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MaglLev Load Balancers




What.

* Name from Google paper

* An answer to “How do you spread packets for a single IP across
multiple load balancers while making sure the flow ends up at the

same backend machine”



Where are we?




Multiple machines

ggregated into
single virtual LB
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Semi-arbitrarily decides

which load balancer
member to send it to
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Why not just use the first layer?




Why is stability needed?

* Adding or removing capacity shouldn’t induce a reshuffling of
where packets ultimately get sent

e TCP is stateful

* Need to end up at the same backend server



Why is stability needed?

* Adding or removing capacity shouldn’t induce a reshuffling of
where packets ultimately get sent

e TCP is stateful

* Need to end up at the same backend server

* Goal: Keep sending the same flow to the same backend
host, regardless of what network path it takes



Agnostic, next hop doesn’t

matter

]

Next hop should be the
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“192.168.1.1 is here”
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“192.168.1.1 is here”

Are you healthy?
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Healthchecks are simple but Backend Healthy

requent 10.1.0.1 YES
10.1.0.2 YES
10.1.0.3 YES
10.1.0.4 NO
10.1.0.5 YES
10.1.0.6 YES

10.1.0.7 YES



“192.168.1.1 is here”

Are you healthy?
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Daxlsracd
Backend
10.1.0.1

YES
YES
YES

10.1.0.2

10.1.0.3

NO
YES
YES
YES

Healthy
YES

Backend
10.1.0.1
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YES
YES
NO

10.1.0.2

10.1.0.3

t

A
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10.1.0.7

10.1.0.4
10.1.0.5
10.1.0.6
10.1.0.7
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TCP

Super important data

Proto




Packet

162.8.7.6:12345

Src
Dst

1.2.3.4:443

TCP

Super important data

Proto

1.2.3.4is on 4 paths, I'll choose
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of backends...
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of backends...

It’s not in my LRU
cache, recalculate

the hash
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New headers!

Src 2604::42:12345

Dst 2604::ae:443
Proto TCP

Src 162.8.7.6:12345

Dst 1.2.3.4:443
Proto TCP

Super important data



»)

2604::ae:443
TC
162.8.7.6:12345

2604::42:12345
1.2.3.4:443
TCP

Packet
Super important data

Src
Dst
Proto
Src
Dst
Proto




2604::ae
1.2.3.4

Packet

Src 2604::42:12345

Dst 2604::ae:443
Proto TCP

Src 162.8.7.6:12345

Dst 1.2.3.4:443
Proto TCP

Super important data



2604::ae
1.2.3.4

Packet

Src 162.8.7.6:12345
Dst 1.2.3.4:443
Proto TCP

Super important data



2604::ae
1.2.3.4

Packet

Src 162.8.7.6:12345
Dst 1.2.3.4:443
Proto TCP

Super important data



2604::ae
1.2.3.4

Packet

Src 1.2.3.4:443
Dst 162.8.7.6:12345
Proto TCP

Super important data



\\ ,N\\\\I“

;M .\W/ AL IRE TNE TRES Y
k) s ,,ﬂhﬂ O P
\
/ i 1 M i ;
\
R . - -
h .ﬂ\, . nig = ;
\ ./_,.,
a &




Where are we?
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1.2.3.4 is for this set

of backends...
— |t’s not in my LRU

cache, recalculate

the hash




D

wn Um

A2 X ©

S <15 9
C 4 >0 -
ST EQ
.Be.mmuﬁwmw
ktaauuu
A_..COehOA.
3anh hO
‘IonCtl




«/‘\Q\\\\\\“\
/......ﬁ\ ,,,,,,,,
KO
M —
H0N

AR O\ —

AN

\\_ 7 u_ PO



F16

F16

HGRID

F16

F16

https://engineering.fb.com/data-center-engineering/f16-minipack/



https://engineering.fb.com/data-center-engineering/f16-minipack/

Differences with ‘standard’ L4

* Remove a single point of failure

* Replaced with requirement to keep backend state roughly in
common

* Invasive changes to network

* Network needs to support multiple machines announcing same IP

* Backend systems need to add same IP on loopback



Special sauce

* Katran on github - facebookincubator/katran

* eBPF + eXpress Data Path means packets get processed as early as

possible

* Open sourcing blog post (link) + conference talk (link)


https://github.com/facebookincubator/katran
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.facebook.com/atscaleevents/videos/2090080137931746/




Comparison

* Many L7 Load Balancers

* Maintain IPs and DNS records for each?

* DNS

* Maglev reacts quicker to a dead L7



Putting it together



What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




What happens when | type “facebook.com” and hit enter




* Introduction to network load balancers
 Know what classes of load balancer is
Wra ppi ng u p appropriate for common usecases
 Know some attributes of network

architecture at scale




facebook Thank You







