
How Stripe invests in 
technical infrastructure

Will Larson
@lethain

2019









Prioritizing infrastructure investment...



...in a high autonomy environment...



...within a rapidly scaling business.



How to actually do useful things...



...without burning out.



What is technical infrastructure?



Technical infrastructure:
Someone’s biggest problem they dislike.



Examples of technical infrastructure
Developer tools
Data infrastructure
Core libraries and frameworks
Model training and evaluation



Technical infrastructure:
Tools used by 3+ teams for business 
critical workloads.



Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing





● Scale MongoDB
● Lower AWS costs
● GDPR

Forced Discretionary
● Sorbet
● Server to service
● Deep learning





● Critical remediation
● “Hit budget”
● Support launch

Short-term Long-term
● QoS strategy
● “Bend the cost curve”
● Rewrite monolith









Where is your team now?



Where do you want to be?





Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing





Even Stripe...



MongoDB





Shared replsets
Easy to maintain :) 
Don’t cost much :)
Limited isolation :(
Big blast radius :(



More time on incidents



Incident impact increasing



When things aren’t getting better,
they are getting worse



How to fix?









Ok, so what’s the firefighting playbook?



Reduce concurrent work



Finish something



Automate



Eliminate categories of problems



Are you seeing signs of progress?



No? You’ve gotta hire



Once there’s progress, stay the course!



btw, don’t fall in love with firefighting



Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing





Rare opportunity in infrastructure



Rare also means inexperienced



tl;dr
Talk to your users more



tl;dr
Talk to your users more



tl;dr
Listen to your users more



Ways innovation goes wrong...



Problem
Making the most intuitive fix



Problem
Fixating on the local maxima



“Ruby is a terrible language.”



Discover



Discover
Benchmark with peer companies

Coffee chats with users
SLOs

Surveys





Problem
Infinite possibilities, what to pick?



“The critical business outcome is me 
learning Elixir.” 



Prioritization



Prioritization
Order by return on investment

Don’t try without users in the room
Long-term vision





Problem
Right opportunity with wrong solution



“Monster is too unreliable and slow!”



“Let’s just rewrite monster.”



“Let’s just rewrite monster. Again.”



“Let’s just rewrite harden monster.”



Validation



Validation
Cheaply disprove approach

Try hardest cases early
Embed with owners



“Can we provide a unified interface for 
task, cronjob and service orchestration?”



Kubernetes



Kubernetes
Chronos
Railyard
Services



tl;dr
Talk to your users more



Be valuable or go back to firefighting



Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing





Fool me once, shame on you



Fool me twice, shame on me



Fool me every year on exact same date?









“Convert unplanned scalability work 
into planned scalability work.”



Schedule manual load tests



Schedule automated load tests



Run continuous load tests



Solved out of a job



Great technology fix,
but what’s the organizational fix?



Infrastructure properties



Stripe’s infrastructure properties
Security
Reliability
Usability
Efficiency
Latency



Lightly ordered but not stack ranked



More a portfolio: invest in each



Baselines!



Invest to maintain your baselines



Maintain across timeframes



Long-term forced work!





Do it now or firefight it later



Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing



Wait… there’s more than one team?





What we actually do today



Investment strategy
40% user asks
30% platform quality
30% “Key Initiatives”



40/30/30?



Solve from your constraints



Introduction

1. Fundamentals
2. Escaping the firefight
3. Learning to innovate
4. Navigating breadth
5. Unifying approach

Closing



Technical infrastructure:
Tools used by 3+ teams for business 
critical workloads.



Firefighting:
Limit work in progress.
Finish things.
If that’s not enough, hire.



Innovation:
Listen to your users.
Listen to your users.
Listen to your users.



Navigating breadth:
Identify principles.
Set baselines.
Plan across timeframes.



Bring it together:
Investment strategy.
Users, baselines and timeframes.



Q&A

@lethain / lethain.com


