
Autopsy of a MySQL automation
disaster

by Jean-François Gagné
presented at SRECon Dublin (October 2019)

Senior Infrastructure Engineer / System and MySQL Expert
jeanfrancois AT messagebird DOT com / @jfg956 #SREcon

To err is human
To really foul things up requires a computer[1]

(or a script)

[1]: http://quoteinvestigator.com/2010/12/07/foul-computer/

2

Session Summary

1. MySQL replication
2. Automation disaster: external eye
3. Chain of events: analysis
4. Learning / takeaway

3

MySQL replication
● Typical MySQL replication deployment at Booking.com:

+---+
| M |
+---+

|
+------+-- ... --+---------------+-------- ...
| | | |

+---+ +---+ +---+ +---+
| S1| | S2| | Sn| | M1|
+---+ +---+ +---+ +---+

|
+-- ... --+
| |

+---+ +---+
| T1| | Tm|
+---+ +---+

4

MySQL replication’
● And they use(d) Orchestrator (more about Orchestrator in the next slide):

5

MySQL replication’’
● Orchestrator allows to:

● Visualize replication deployments

● Move slaves for planned maintenance of an intermediate master

● Automatically replace an intermediate master in case of its unexpected failure
(thanks to pseudo-GTIDs when we have not deployed GTIDs)

● Automatically replace a master in case of a failure (failing over to a slave)

● But Orchestrator cannot replace a master alone:
● Booking.com uses DNS for master discovery

● So Orchestrator calls a homemade script to repoint DNS (and to do other magic)

6

Intermediate Master Failure

7

Master Failure

8

MySQL Master High Availability [1 of 4]

Failing-over the master to a slave is my favorite HA method
• But it is not as easy as it sounds, and it is hard to automate well
• An example of complete failover solution in production:

https://github.blog/2018-06-20-mysql-high-availability-at-github/

The five considerations of master high availability:
(https://jfg-mysql.blogspot.com/2019/02/mysql-master-high-availability-and-failover-more-thoughts.html)

• Plan how you are doing master high availability
• Decide when you apply your plan (Failure Detection – FD)
• Tell the application about the change (Service Discovery – SD)
• Protect against the limit of FD and SD for avoiding split-brains (Fencing)
• Fix your data if something goes wrong

9

https://github.blog/2018-06-20-mysql-high-availability-at-github/
https://jfg-mysql.blogspot.com/2019/02/mysql-master-high-availability-and-failover-more-thoughts.html

10

MySQL Master High Availability [2 of 4]

Failure detection (FD) is the 1st part (and 1st challenge) of failover
• It is a very hard problem: partial failure, unreliable network, partitions, …
• It is impossible to be 100% sure of a failure, and confidence needs time
à quick FD is unreliable, relatively reliable FD implies longer unavailability

Ø You need to accept that FD generates false positive (and/or false negative)

Repointing is the 2nd part of failover:
• Relatively easy with the right tools: MHA, GTID, Pseudo-GTID, Binlog Servers, …
• Complexity grows with the number of direct slaves of the master

(what if you cannot contact some of those slaves…)
• Some software for repointing:

• Orchestrator, Ripple Binlog Server,
Replication Manager, MHA, Cluster Control, MaxScale, …

11

MySQL Master High Availability [3 of 4]

In this configuration and when the master fails,
one of the slave needs to be repointed to the new master:

12

MySQL Master High Availability [4 of 4]

Service Discovery (SD) is the 3rd part (and 2nd challenge) of failover:
• If centralised, it is a SPOF; if distributed, impossible to update atomically
• SD will either introduce a bottleneck (including performance limits)

or will be unreliable in some way (pointing to the wrong master)
• Some ways to implement MySQL Master SD: DNS, ViP, Proxy, Zookeeper, …

http://code.openark.org/blog/mysql/mysql-master-discovery-methods-part-1-dns
Ø Unreliable FD and unreliable SD is a recipe for split-brains !

Protecting against split-brains (Fencing): Adv. Subject – not many solutions
(Proxies and semi-synchronous replication might help)

Fixing your data in case of a split-brain: only you can know how to do this !
(tip on this later in the talk)

http://code.openark.org/blog/mysql/mysql-master-discovery-methods-part-1-dns

MySQL Service Discovery @ MessageBird
MessageBird uses ProxySQL for MySQL Service Discovery

13

Orchestrator @ MessageBird

15

Failover War Story

Master failover does not always go as planned

We will now look at our War Story

Our subject database
● Simple replication deployment (in two data centers):

Master RWs +---+
happen here --> | A |

+---+
|
+------------------------+
| |

Reads +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+ And reads
| Y | <-- happen here
+---+

16

Incident: 1st event
● A and B (two servers in same data center) fail at the same time:

Master RWs +\-/+
happen here --> | A |
but now failing +/-\+

Reads +\-/+ +---+
happen here --> | B | | X |
but now failing +/-\+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

17

(I will cover how/why this happened later.)

Incident: 1st event’
● Orchestrator fixes things:

+\-/+
| A |
+/-\+

Reads +\-/+ +---+ Now, Master RWs
happen here --> | B | | X | <-- happen here
but now failing +/-\+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

18

Split-brain: disaster
● A few things happen in that day and night, and I wake-up to this:

+\-/+
| A |
+/-\+

Master RWs +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+
| Y |
+---+

19

Split-brain: disaster’
● And to make things worse, reads are still happening on Y:

+\-/+
| A |
+/-\+

Master RWs +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+ Reads
| Y | <-- happen here
+---+

20

Split-brain: disaster’’
● This is not good:

● When A and B failed, X was promoted as the new master

● Something made DNS point to B (we will see what later)
à writes are now happening on B

● But B is outdated: all writes to X (after the failure of A) did not reach B

● So we have data on X that cannot be read on B

● And we have new data on B
that is not read on Y

21

+\-/+
| A |
+/-\+

Master RWs +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis
● Digging more in the chain of events, we find that:

● After the 1st failure of A, a 2nd one was detected and Orchestrator failed over to B

● So after their failures, A and B came back and formed an isolated replication chain

22

+\-/+
| A |
+/-\+

+\-/+ +---+ Master RWs
| B | | X | <-- happen here
+/-\+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis
● Digging more in the chain of events, we find that:

● After the 1st failure of A, a 2nd one was detected and Orchestrator failed over to B

● So after their failures, A and B came back and formed an isolated replication chain

● And something caused a failure of A

23

+---+
| A |
+---+

|
+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis
● Digging more in the chain of events, we find that:

● After the 1st failure of A, a 2nd one was detected and Orchestrator failed over to B

● So after their failures, A and B came back and formed an isolated replication chain

● And something caused a failure of A

● But how did DNS end-up pointing to B ?
● The failover to B called the DNS repointing script

● The script stole the DNS entry
from X and pointed it to B

24

+\-/+
| A |
+/-\+

+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis
● Digging more in the chain of events, we find that:

● After the 1st failure of A, a 2nd one was detected and Orchestrator failed over to B

● So after their failures, A and B came back and formed an isolated replication chain

● And something caused a failure of A

● But how did DNS end-up pointing to B ?
● The failover to B called the DNS repointing script

● The script stole the DNS entry
from X and pointed it to B

● But is that all: what made A fail ?

25

+\-/+
| A |
+/-\+

Master RWs +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis’
● What made A fail ?

● Once A and B came back up as a new replication chain, they had outdated data

● If B would have come back before A, it could have been re-slaved to X

26

+---+
| A |
+---+

|
+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis’
● What made A fail ?

● Once A and B came back up as a new replication chain, they had outdated data

● If B would have come back before A, it could have been re-slaved to X

● But because A came back before re-slaving, it injected heartbeat and p-GTID to B

27

+\-/+
| A |
+/-\+

+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis’
● What made A fail ?

● Once A and B came back up as a new replication chain, they had outdated data

● If B would have come back before A, it could have been re-slaved to X

● But because A came back before re-slaving, it injected heartbeat and p-GTID to B

● Then B could have been re-cloned without problems

28

+---+
| A |
+---+

|
+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis’
● What made A fail ?

● Once A and B came back up as a new replication chain, they had outdated data

● If B would have come back before A, it could have been re-slaved to X

● But because A came back before re-slaving, it injected heartbeat and p-GTID to B

● Then B could have been re-cloned without problems

● But A was re-cloned instead (human error #1)

29

+---+
| A |
+---+

+\-/+ +---+ Master RWs
| B | | X | <-- happen here
+/-\+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Split-brain: analysis’
● What made A fail ?

● Once A and B came back up as a new replication chain, they had outdated data

● If B would have come back before A, it could have been re-slaved to X

● But because A came back before re-slaving, it injected heartbeat and p-GTID to B

● Then B could have been re-cloned without problems

● But A was re-cloned instead (human error #1)

● Why did Orchestrator not fail-over right away ?
● B was promoted hours after A was brought down…

● Because A was downtimed only for 4 hours (human error #2)

30

+\-/+
| A |
+/-\+

+---+ +---+ Master RWs
| B | | X | <-- happen here
+---+ +---+

|
+---+ Reads
| Y | <-- happen here
+---+

Orchestrator anti-flapping
● Orchestrator has a failover throttling/acknowledgment mechanism[1]:

● Automated recovery will happen
● for an instance in a cluster that has not recently been recovered

● unless such recent recoveries were acknowledged

● In our case:
● the recovery might have been acknowledged too early (human error #0 ?)

● with a too short “recently” timeout

● and maybe Orchestrator should not have failed over the second time

[1]: https://github.com/github/orchestrator/blob/master/docs/topology-recovery.md
#blocking-acknowledgments-anti-flapping

31

https://github.com/github/orchestrator/blob/master/docs/topology-recovery.md

Split-brain: summary
● So in summary, this disaster was caused by:

1. A fancy failure: two servers failing at the same time

2. A debatable premature acknowledgment in Orchestrator
and probably too short a timeout for recent failover

3. Edge-case recovery: both servers forming a new replication topology

4. Restarting with the event-scheduler enabled (A injecting heartbeat and p-GTID)
5. Re-cloning wrong (A instead of B; should have created C and D and thrown away A

and B; too short downtime for the re-cloning)
6. Orchestrator failing over something that it should not have

(including taking an questionnable action when a downtime expired)
7. DNS repointing script not defensive enough

32

Fancy failure: more details
● Why did A and B fail at the same time ?

● Deployment error: the two servers in the same rack/failure domain ?

● And/or very unlucky ?

● Very unlucky because…

10 to 20 servers failed that day in the same data center

Because human operations and “sensitive” hardware

33

+\-/+
| A |
+/-\+

+\-/+ +---+
| B | | X |
+/-\+ +---+

|
+---+
| Y |
+---+

How to fix such situation ?
● Fixing “split-brain” data on B and X is hard

● Some solutions are:
● Kill B or X (and lose data)

● Replay writes from B on X or vice-versa (manually or with replication)

● But AUTO_INCREMENTs are in the way:

● up to i used on A before 1st failover

● i-n to j1 used on X after recovery

● i to j2 used on B after 2nd failover

34

+\-/+
| A |
+/-\+

Master RWs +---+ +---+
happen here --> | B | | X |

+---+ +---+
|

+---+ Reads
| Y | <-- happen here
+---+

Takeaway
● Twisted situations happen

● Automation (including failover) is not simple:
à code automation scripts defensively

● Be mindful for premature acknowledgment, downtime more than less,
shutdown slaves first à understand complex interactions of tools in details

● Try something else than AUTO-INCREMENTs for Primary Key
(monotonically increasing UUID[1] [2] ?)

[1]: https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/
[2]: http://mysql.rjweb.org/doc.php/uuid

35

https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/
http://mysql.rjweb.org/doc.php/uuid

36

Re Failover War Story

Master failover does not always go as planned
• because it is complicated

It is not a matter of “if” things go wrong
• but “when” things will go wrong

Please share your war stories
• so we can learn from each-others’ experience
• GitHub has a MySQL public Post-Mortem (great of them to share this):

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

MessageBird is hiring
messagebird.com/en/careers/

https://messagebird.com/en/careers/

Thanks !

by Jean-François Gagné
presented at SRECon Dublin (October 2019)

Senior Infrastructure Engineer / System and MySQL Expert
jeanfrancois AT messagebird DOT com / @jfg956 #SREcon

