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We need SLOs and observability.
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SLOs and debugging require data.
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But what kind of telemetry data?
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User experiences.



Host metrics.
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But most problems aren't per-host.
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We neecontextual data.
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User experiences =
marbles.
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Marbles have many properties.
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So do events in our systems.
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How many/how much?
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How can we win the game?
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(without spending all day)
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and what about tvese variations?
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HMMM ...

How can we debug our systems...
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without breaking the bank?
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Three strategies for taming the spew. |
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Reduce. Reuse. Recycle.

®
®,h @lizthegrey at #SREcon

21



N\
\

(1) Store less data.
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Back to the marble analogy...

4
h @lizthegrey at #SREcon



60. o) O.@.

Reduce what we need to count.
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Stop writing read-never data. |
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First, structure your data.
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One event per transaction.
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Use tracing for linked events. |
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Often, trimming :
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(2) Sample your data.
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to the rescue!
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Count events.

®
®,h @lizthegrey at #SREcon



the results by N afterwards.
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var sampleRate = flag.Int("sampleRate", 1000, "Service's sample rate")

func handler(resp http.ResponseWriter, req *http.Request) {
// Use an upstream-generated random sampling ID if it exists.
// otherwise we're a root span. generate & pass down a random ID.
var r floaté4
if r, err := floatFromHexBytes(req.Header.Get("Sampling-ID")); err != nil {
r = rand.Floaté4()

b

start := time.Now()

// Propagate the Sampling-ID when creating a child span
1, err := callAnotherService(r)

resp.wWrite(i)

if r < 1.0 / *sampleRate {
RecordEvent(req, *sampleRate, start, err)
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Don't be afraid of sample rates.
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In [17): show _weighted()

Don't believe me? Ask a

Ross, Joe (SignalFx). "Statistical Aspects of Distributed
Tracing" at Monitorama Portland 2019

https:/www.slideshare.net/secret/INwmsyntwaBbx7
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https://www.slideshare.net/secret/INwmsyntwaBbx7

*
are sample-safe’!

* caveats at Heinrich Hartmann's Statistics for Engineers
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(3) Aggregate data.
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Cheap to answer known queries.
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Target-rate sampling
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Systems scale with load.
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Awesome THANKS!
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PROB tem!!

Cost predictability matters.
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Keep traces to debug.
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Adjust on trailing volume.
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go: func() {
for {
time.Sleep(time.Minute)
newSampleRate = *requestsInPastMinute / (60 * *targetEventsPerSec)
if newSampleRate < 1 {
sampleRate = 1.0

} else {

sampleRate = newSampleRate
}
newRequestCounter := 0

// Production code would do something less race-y, but this is readable
requestsInPastMinute = &newRequestCounter

+()
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Keep a consistent number of events.
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Reconcile using the sample rate.
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Per-key sampling
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Each IS unique.
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How can we save the
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Normalize per-key.
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Different key,
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Retain errors & slow queries.

®
®,h @lizthegrey at #SREcon



var sampleRate = flag.Int("sampleRate", 1000, "Service's sample rate")
var outlierSampleRate = flag.Int("outlierSampleRate", 5, "Outlier sample rate")

func handler(resp http.ResponseWriter, req *http.Request) {
start := time.Now()
i, err := callAnotherService(r)
resp.wWrite(1i)

r := rand.Float64()
if err !'= nil || time.Since(start) > 500*time.Millisecond {
if r < 1.0 / *outlierSampleRate {
RecordEvent(req, *outlierSampleRate, start, err)
¥
} else {
if r < 1.0 / *sampleRate {
RecordEvent(req, *sampleRate, start, err)

}
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func checkSampleRate(resp http.ResponsewWriter, start time.Time, err error

msg :: nmn
if err '= nil {

msg = err.Error()
by

roundedLatency := 100 *(time.Since(start) / (100*time.Millisecond))
k := SampleKey {
ErrMsg: msg,
BackendShard: resp.Header().Get("Backend-Shard"),
LatencyBucket: roundedLatency,
}
if neverSample(k) {
return -1.0

clkl]++

if r, ek := sr[k]; ok {
return r

} else {
return 1.0
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Target rate'+ Per Key ‘
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bucket counts.

Distributions are
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Metrics and can be friends!
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You can prevent data spew!
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Get the right data. Cheaply enough.
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Structure. . (Aggregate?)

®
®,h @lizthegrey at #SREcon



Refine your data.

Reduce, , & Recycle. Wisely!
lizthegrey.com; @lizthegrey
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Find me at the aLameLEss booth!
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