Refining Systems Data
(without losing fidelity)

Liz Fong-Jones
@lizthegrey
#SREcon EMEA
October 3, 2019

@@ honeycombiio w/ illustrations by @emilywithcurls!

4
h @lizthegrey at #SREcon

P\

We need SLOs and observability.

4
h @lizthegrey at #SREcon

SLOs and debugging require data.

4
h @lizthegrey at #SREcon

&

But what kind of telemetry data?

®
®,h @lizthegrey at #SREcon

4
h @lizthegrey at #SREcon

User experiences.

Host metrics.

h @lizthegrey at #SREcon

But most problems aren't per-host.

4
h @lizthegrey at #SREcon

We neecontextual data.

4
h @lizthegrey at #SREcon

@O @
O

User experiences =
marbles.

4
h @lizthegrey at #SREcon

Marbles have many properties.

®
®,h @lizthegrey at #SREcon

11

®
®,h @lizthegrey at #SREcon

IPADORESS TimesTame PROCESS ID

Emr—— e

__ Request
URL
RESPONSE Reseonse ASCR ageNr requesT
[]0] size ID

So do events in our systems.

12

How many/how much?

13

oh @lizthegrey at #SREcon

4
h @lizthegrey at #SREcon

14

How can we win the game?

4
h @lizthegrey at #SREcon

15

(without spending all day)

4
h @lizthegrey at #SREcon

and what about tvese variations?

4
h @lizthegrey at #SREcon

17

esN'T WOR R

OO Dgo&THlS oNE

HMMM ...

How can we debug our systems...

18

h @lizthegrey at #SREcon

without breaking the bank?

®
®,h @lizthegrey at #SREcon

19

Three strategies for taming the spew. |

@ 20
h @lizthegrey at #SREcon

Reduce. Reuse. Recycle.

®
®,h @lizthegrey at #SREcon

21

N\
\

(1) Store less data.

®
¢, h @lizthegrey at #SREcon

Back to the marble analogy...

4
h @lizthegrey at #SREcon

60. o) O.@.

Reduce what we need to count.

®
®,h @lizthegrey at #SREcon

Stop writing read-never data. |

4
h @lizthegrey at #SREcon

IPADORESS TimesTamMme PRacess ID

Emr—— s

Reauest
JER) G

URL
RESPONS & Resrouse ASCR agCNT RCQMCS T
caDe ze

First, structure your data.

®
¢, h @lizthegrey at #SREcon

One event per transaction.

®
®,h @lizthegrey at #SREcon

Use tracing for linked events. |

4
h @lizthegrey at #SREcon

Often, trimming :

®
®,h @lizthegrey at #SREcon

)
L/

(2) Sample your data.

-
®,h @lizthegrey at #SREcon

to the rescue!

®
®,h @lizthegrey at #SREcon

Count events.

®
®,h @lizthegrey at #SREcon

the results by N afterwards.

®
®,h @lizthegrey at #SREcon

(" @ . (&)
Q
Yo" *
e ,
Y o~

®
®,h @lizthegrey at #SREcon

\ “ 7
N e

var sampleRate = flag.Int("sampleRate", 1000, "Service's sample rate")

func handler(resp http.ResponseWriter, req *http.Request) {
// Use an upstream-generated random sampling ID if it exists.
// otherwise we're a root span. generate & pass down a random ID.
var r floaté4
if r, err := floatFromHexBytes(req.Header.Get("Sampling-ID")); err != nil {
r = rand.Floaté4()

b

start := time.Now()

// Propagate the Sampling-ID when creating a child span
1, err := callAnotherService(r)

resp.wWrite(i)

if r < 1.0 / *sampleRate {
RecordEvent(req, *sampleRate, start, err)

11

Don't be afraid of sample rates.

.. .
¢, h @lizthegrey at #SREcon NESEEENNEEEEEEEEEE =

.. .
¢, h @lizthegrey at #SREcon NESEEENNEEEEEEEEEE =

In [17): show _weighted()

Don't believe me? Ask a

Ross, Joe (SignalFx). "Statistical Aspects of Distributed
Tracing" at Monitorama Portland 2019

https:/www.slideshare.net/secret/INwmsyntwaBbx7

4
h @lizthegrey at #SREcon

https://www.slideshare.net/secret/INwmsyntwaBbx7

*
are sample-safe’!

* caveats at Heinrich Hartmann's Statistics for Engineers

®
®,h @lizthegrey at #SREcon

N\
U/

(3) Aggregate data.

®
®,h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

799

Cheap to answer known queries.

®
¢, h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

4
h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

H o oe
esN'T W
o DgosTms oNe

®
®,h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

Target-rate sampling

®
¢, h @lizthegrey at #SREcon

Systems scale with load.

®
®,h @lizthegrey at #SREcon

Awesome THANKS!
TH'S WILL SoLve

PROB tem!!

Cost predictability matters.

®
®,h @lizthegrey at #SREcon

Keep traces to debug.

4
h @lizthegrey at #SREcon

Adjust on trailing volume.

®
®,h @lizthegrey at #SREcon

go: func() {
for {
time.Sleep(time.Minute)
newSampleRate = *requestsInPastMinute / (60 * *targetEventsPerSec)
if newSampleRate < 1 {
sampleRate = 1.0

} else {

sampleRate = newSampleRate
}
newRequestCounter := 0

// Production code would do something less race-y, but this is readable
requestsInPastMinute = &newRequestCounter

+()

®
®,h @lizthegrey at #SREcon

Keep a consistent number of events.

®
®,h @lizthegrey at #SREcon

Reconcile using the sample rate.

®
®,h @lizthegrey at #SREcon

A
mp

Per-key sampling

®
®,h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

Each IS unique.

4
h @lizthegrey at #SREcon

/\

How can we save the

@
h @lizthegrey at #SREcon

Normalize per-key.

®
®,h @lizthegrey at #SREcon

Different key,

4
h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

1x

Retain errors & slow queries.

®
®,h @lizthegrey at #SREcon

var sampleRate = flag.Int("sampleRate", 1000, "Service's sample rate")
var outlierSampleRate = flag.Int("outlierSampleRate", 5, "Outlier sample rate")

func handler(resp http.ResponseWriter, req *http.Request) {
start := time.Now()
i, err := callAnotherService(r)
resp.wWrite(1i)

r := rand.Float64()
if err !'= nil || time.Since(start) > 500*time.Millisecond {
if r < 1.0 / *outlierSampleRate {
RecordEvent(req, *outlierSampleRate, start, err)
¥
} else {
if r < 1.0 / *sampleRate {
RecordEvent(req, *sampleRate, start, err)

}

"®
¢, h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

func checkSampleRate(resp http.ResponsewWriter, start time.Time, err error

msg :: nmn
if err '= nil {

msg = err.Error()
by

roundedLatency := 100 *(time.Since(start) / (100*time.Millisecond))
k := SampleKey {
ErrMsg: msg,
BackendShard: resp.Header().Get("Backend-Shard"),
LatencyBucket: roundedLatency,
}
if neverSample(k) {
return -1.0

clkl]++

if r, ek := sr[k]; ok {
return r

} else {
return 1.0

3
®
¢, h @lizthegrey at #SREcon

®
®,h @lizthegrey at #SREcon

Target rate'+ Per Key ‘

@
h @lizthegrey at #SREcon

4
h @lizthegrey at #SREcon

"But | love aggregated

§ 5§ + § 6 §§ §

A EEERE N

TEERREEE

E?@@ﬁ@@ﬁ :
bucket counts.

Distributions are

®
®,h @lizthegrey at #SREcon

®
¢, h @lizthegrey at #SREcon

Metrics and can be friends!

®
®,h @lizthegrey at #SREcon

You can prevent data spew!

[(e}
~

oh @lizthegrey at #SREcon

&\

Get the right data. Cheaply enough.

4
®,h @lizthegrey at #SREcon

Structure. . (Aggregate?)

®
®,h @lizthegrey at #SREcon

Refine your data.

Reduce, , & Recycle. Wisely!
lizthegrey.com; @lizthegrey

o®

® 4 honeycombiio R osEomERE 7O

http://honeycomb.io
http://lizthegrey.com
http://twitter.com/lizthegrey
http://honeycomb.io

\

Find me at the aLameLEss booth!

lizthegrey.com; @lizthegrey

\

® . honeycombio HoEEoEEE N

http://honeycomb.io
http://lizthegrey.com
http://twitter.com/lizthegrey
http://honeycomb.io

