High Availability Solution for Large

Scale Database Systems

GUOWEI ZENG
Baidu DBA

Agenda

MySQL at Baidu, and the HA troubles

* Current HA solutions, and problems
* Baidu HA solution

* Benefits and experiences for applications

MySQL at Baidu : the main OLTP Database Services

* Cover 95% of OLTP businesses * Baidu MySQL Database Architecture:

d P
e 1,000+ clusters based on Proxy

* 2,800+ slices (M-S) Applications
* 13,000+ MySQLs \ J J
-
* PB-scale data size Laver
* 100+ billion queries per day \
* Clouds: public, private, hybrid \ \

Data

Storage i i

Layegr Master Master
i > A >

Slice 1 Slice n

Troubles: how to guarantee the availability efficiently

« Stateful services: async replication
* Single-node write
* Data consistency for OLTP

* What we met in Baidu?

* Mass clusters: core businesses
* Disaster tolerance: machine, network, etc.
* Multi-version: 5.0~5.7

Automation is inevitable
* Manual HA

« Skill level: practice regularly
* QOccasion: 3am alert
* Concurrency

* HA focus on
* High concurrency
* Failure detection: accurate
* Recovery: data consistency

Current HA Solutions and Problems

MHA: MySQL Master High Availability

 Architecture

ssh * Centralized: concurrency, not support data
center(DC) failure

* Requirements: trust building for 10000+
machines? M-M

* Failure detections

MMM: Multi-Master replication manager e False positiveS' overloads

’ o[Monitor . \ * False negative: freezing, hardware
Master 1| : | Master 2 * Recovery: data consistency
S [st] / * Error on some version

o Repheation * Poor performance on some cases
‘ Application] ——— MySQL
- MMM

Baidu HA Solution: Architecture

* Decentralization

Applications
 XAgent
* swithcover coordinator J J l
* monitor
* Configure center xagent xagent PRI
* topology storage I T ‘ T
 push/pull mode l A

* Disaster tolerance

e
* Multi-levels: machine, DC, region

xagent

* Scalability

* 5000 MySQLs
* easlly deploy

Baidu HA Solution: Failure Detection

* Current Solution * Problems
* Ping/ssh (MHA) * Misjudgments
* Agent: write or read queries (MMM)
Casel: False positives CaseZ2: False negatives:
Overload Disk failure Machine freezing

\

11

pingv | ping v ping v | ping v | ping v ping v/
connv | conn X conn ¢ i conn ¢/; conn X conn X
queries X read v | write X *slave status v/

Master Failure Detection: 3-Layers Strategy

Classify of failures Detection Pyramid
ITEM SUBITEMS SWITCH
Instance | dead yes
, Instance
Failure ¢ :
reezing yes Detection
repeated dead no
overload no Cluster
Machine | disk failure yes Detection
Failure
dead yes
freezing yes Global
Detection
Network | dead yes
Failure [
jitter no

Master Failure Detection: Cases

1.

Instance Detection

DB dead/freezing‘
X conn 104

overload ®
X conn: too many
X read || X write
v/ write disk file

disk fault @
X conn: too many
v read || X write
X write disk file

2. Cluster Detection

machine dead @

X slave status

XAgent dead ®

v slaves status
v’ slave status(reconn)

machine freezing ®

v’ slave status
X slave status(reconn)

3. Global Detection

net jitter

X cur_time — last _time

capacity not enougﬂ

X slaves < min_slave

Fault Recovery: Data Consistency

new
master

%
d

fault self-recovery

ST S

D
slave

1. between master and slaves 3. elect new master

m 2. among slaves
I —
— N — —

Fault Recovery: Data Consistency between M&S

Master-Slave Replication Solution
* Trade-off: data consistency, response time

async semi-sync (group)

'®

mast
2

- .gs

* MAY lost data (try to) * data consistent
* High concurrency * Higher response time
* Low response time * Financial, order, etc

Forum, linkcache, etc

raft/MGR

®, 10

S
D >
slave
slave —

slave

data consistent
Highest response time

Allowed sensitive switchover

exploring on commercial

Fault Recovery: Data Consistency among Slaves

 General Process

slavel slave2 slave3
(tinker)
Step 0: find the tinker(slave with complete data)
sync position 2] Step 1. waiting for all slaves to finish executing relaylogs
sync position 3 | Step 2: find the sync position of all slaves

Master Log_File Step 3. other slaves complete data from tinker
S O « (If GTID mode over 5.5, skip Step 2&3)

Relay_M aster_Log_@ l

* Current Solution * Problems
- Find sync pos(step 2): compare with * Accuracy: binlog bugs In early version
relay-logs pos * Performance: waiting for all slaves finishing

- Fullfil data(step 3): dump to SQL file to executing relaylogs(stepl), and fullfil data(step3)
execute * Safety: trust building

Fault Recovery: Data Consistency among Slaves

* Our Solution
* timestamp per 3s

* data progress: <last timestamp, offset>
* tinker:t1 > t2 || (t1 ==t2 && 0l > 02)

at 42685
#190528 7:35:05 server id 3468928537 end log pos 42672 CRC32 0x126clb20 Query

SET TIMESTAMP=1559000105/*!*/;

REPLACE INTO heartbeat SET id='xdb xdbmars 0000', value=1559000105
/*Vx/;

at 42835
#190528 7:35:05 server id 3468928537 end log pos 42703 CRC32 0x7cb383e8 Xid =

COMMIT/*!*/;

at 42866 offset
#190528 7:35:05 server id 3468928537 end log pos 42790 CRC32 0x1830£f6d6 Query

SET TIMESTAMP=1559000105/*!%*/;

BEGIN \ 4

End of log file

ROLLBACK /* added by mysglbinlog */;

/*150003 SET COMPLETION TYPE=QOLD COMPLETION TYPE*/;
/*!50530 SET @@SESSION.PSEUDO SLAVE MODE=0%*/;

Fault Recovery: Data Consistency among Slaves

* slave completed data from tinkers

slavel (tinker) slave? slave3
Stepl: execute all relaylogs
Step2.1. stop slave; return data progress executed
Step2.2: find sync pos of other slaves in tinker \

relay-1og.000001 (pos 10378 for slave?)
relay-10g.000002 (pos 4387 for slave3)
mysql-bin.000005

Perfomance: Needn’ t finish relaylog execution

Step3.1: flush logs n+1 times on tinker,

backup 1~nt" binlogs, link to relaylogs. Step3.2: other slaves change master to sync pos
mysql-bin.000005 change master to ${tinker} change master to ${tinker}
mysql-bin.000006 -> relay-1og.000001 master_log_file = master_log_file =
mysql-bin.000007 -> relay-1og.000002 mysql-bin. 00006, mysql-bin.000007,
mysql-bin.000008 master_log_pos = master_log_pos =
10378 4387
End. reset tinker to defaults \

mysql-bin.000005

cluster recovery here
(iIf tinker can be master)

mysgl-bin.000008

Benefits

Cover all MySQL in Baidu: 5.0~5.7

* Online fault recovery: 100% success
* master fault: 3000+ times, MTTR < 50s
* Dataceneter fault: 10+ times, 106 simulative, MTTR < 5min
* online switching: MTTR < 10s

* Support Baidu financial cloud

* Al Bank: first MySQL+X86 on core banking in China.

* China UMS: Topl Acquirers in Asia-Pacific.

HA framework for other databases

Summary

* Complete and Automatic HA Solution

* HA architecture: decentralized
* xagent, config center

* Accurate failure detection
* three layer detecting strategy

—Instance, cluster, global

* Fault Recovery: preserving data consistency
* master-slave synchronization: async, semi-sync, sync on raft
* among slaves: support multi-version

Thank you !

