
0

High Availability Solution for Large

Scale Database Systems

GUOWEI ZENG

Baidu DBA

1

Agenda

• MySQL at Baidu, and the HA troubles

• Current HA solutions, and problems

• Baidu HA solution

• Benefits and experiences for applications

2

MySQL at Baidu：the main OLTP Database Services

• Baidu MySQL Database Architecture:
based on Proxy

• Cover 95% of OLTP businesses

• 1,000+ clusters

• 2,800+ slices (M-S)

• 13,000+ MySQLs

• PB-scale data size

• 100+ billion queries per day

• Clouds: public, private, hybrid

3

Troubles: how to guarantee the availability efficiently

• Stateful services: async replication
• Single-node write

• Data consistency for OLTP

• What we met in Baidu?
• Mass clusters: core businesses

• Disaster tolerance: machine, network, etc.

• Multi-version: 5.0~5.7

4

Automation is inevitable
• Manual HA

• Skill level: practice regularly

• Occasion: 3am alert

• Concurrency

• HA focus on
• High concurrency

• Failure detection: accurate

• Recovery: data consistency

5

Current HA Solutions and Problems

Slave

Master

Slave

node

node

node

Manager

ssh

MHA: MySQL Master High Availability

MMM: Multi-Master replication manager

• Architecture
• Centralized: concurrency, not support data

center(DC) failure

• Requirements: trust building for 10000+

machines? M-M

• Failure detections
• False positives: overloads

• False negative: freezing, hardware

• Recovery: data consistency
• Error on some version

• Poor performance on some cases

6

Baidu HA Solution: Architecture

Master

Slave Slave

DBProxy DBProxy DBProxy

Applications

xagent

xagent xagent

xagent xagent xagent

config center

switch
coordinator

• Decentralization
• XAgent

• swithcover coordinator
• monitor
• operating

• Configure center
• topology storage
• push/pull mode

• Disaster tolerance
• Multi-levels: machine, DC, region

• Scalability
• 5000 MySQLs
• easily deploy

7

Baidu HA Solution: Failure Detection
• Current Solution

• Ping/ssh (MHA)

• Agent: write or read queries (MMM)

Case1: False positives
Overload Machine freezing

ping✔
conn✘

Disk failure

ping✔
conn✔
read✔

Case2: False negatives:

ping✔
conn✘
*slave status✔

• Problems
• Misjudgments

ping✔
conn✘

ping✔
conn✔
queries✘

ping✔
conn✔
write✘

8

Master Failure Detection: 3-Layers Strategy

ITEM SUBITEMS SWITCH

Instance
Failure

dead yes

freezing yes

repeated dead no
overload no

Machine
Failure

disk failure yes

dead yes

freezing yes

Network
Failure

dead yes

jitter no

Classify of failures

Instance

Detection

Cluster
Detection

Global
Detection

Detection Pyramid

9

Master Failure Detection: Cases

✗ conn: too many
✗ read || ✗ write
✓ write disk file

overload

✗ conn: too many
✓ read || ✗ write
✗ write disk file

disk fault

✗ conn 104

DB dead/freezing

✓ slave status
✗ slave status(reconn)

machine freezing

✗ slave status

machine dead

✓ slaves status
✓ slave status(reconn)

XAgent dead

1. Instance Detection 2. Cluster Detection 3. Global Detection

✗ cur_time – last_time

net jitter

capacity not enough

✗ slaves < min_slave

10

Fault Recovery: Data Consistency

master

slave slave slave

slave slave slave

master slave

slave slave

new
master

slave slave

fault self-recovery

1. between master and slaves

2. among slaves

3. elect new master

11

Fault Recovery: Data Consistency between M&S

async

• data consistent
• Highest response time
• Allowed sensitive switchover
• exploring on commercial

• data consistent
• Higher response time
• Financial, order, etc

Master-Slave Replication Solution

• Trade-off: data consistency, response time

master

slave slave slave

1

master

slave slave slave

master

slave

slave

slave

• MAY lost data (try to)
• High concurrency
• Low response time
• Forum, linkcache, etc

semi-sync (group) raft/MGR

2

2

1

2

3 1

2

3

Binary-logs

Relay-logs

12

Fault Recovery: Data Consistency among Slaves

slave1
(tinker)

slave2 slave3

Step 0: find the tinker(slave with complete data）

Step 1: waiting for all slaves to finish executing relaylogs

Step 2: find the sync position of all slaves

Step 3: other slaves complete data from tinker

*（If GTID mode over 5.5, skip Step 2&3）
Master_Log_File
Exec_Master_Log_Pos

Relay_Master_Log_File
Read_Master_Log_Pos

sync position 2

sync position 3

1

2 3

• Current Solution
- Find sync pos(step 2): compare with

relay-logs pos

- Fullfil data(step 3): dump to SQL file to

execute

• Problems
• Accuracy: binlog bugs in early version

• Performance: waiting for all slaves finishing

executing relaylogs(step1), and fullfil data(step3)

• Safety: trust building

• General Process

13

Fault Recovery: Data Consistency among Slaves

timestamp

offset

• Our Solution
• timestamp per 3s

• data progress: <last timestamp, offset>

• tinker: t1 > t2 || (t1 == t2 && o1 > o2)

14

Step2.2: find sync pos of other slaves in tinker

Fault Recovery: Data Consistency among Slaves
• slave completed data from tinkers

Step3.2: other slaves change master to sync pos

slave1 (tinker) slave2 slave3

change master to ${tinker}
master_log_file =

mysql-bin. 00006,
master_log_pos =

10378

change master to ${tinker}
master_log_file =

mysql-bin.000007,
master_log_pos =

4387

Step3.1: flush logs n+1 times on tinker,
backup 1~nth binlogs, link to relaylogs.

mysql-bin.000005
mysql-bin.000006 -> relay-log.000001
mysql-bin.000007 -> relay-log.000002
mysql-bin.000008

End: reset tinker to defaults
mysql-bin.000005
…
mysql-bin.000008

relay-log.000001 (pos 10378 for slave2)
relay-log.000002 (pos 4387 for slave3)
mysql-bin.000005

Step1: execute all relaylogs
Step2.1: stop slave; return data progress executed

Perfomance: Needn’t finish relaylog execution

cluster recovery here
(if tinker can be master)

15

Benefits

• Cover all MySQL in Baidu: 5.0~5.7

• Online fault recovery: 100% success

• master fault: 3000+ times, MTTR < 50s

• Dataceneter fault: 10+ times, 106 simulative, MTTR < 5min

• online switching: MTTR < 10s

• Support Baidu financial cloud

• AI Bank: first MySQL+X86 on core banking in China.

• China UMS: Top1 Acquirers in Asia-Pacific.

• HA framework for other databases

16

Summary
• Complete and Automatic HA Solution
• HA architecture: decentralized
• xagent, config center

• Accurate failure detection
• three layer detecting strategy
– instance, cluster, global

• Fault Recovery: preserving data consistency
• master-slave synchronization: async, semi-sync, sync on raft
• among slaves: support multi-version

17

Thank you !

