Enhance your Python Code
to go beyond GIL

Nitin Bhojwani
INELIRERER
Priya Pandian

W h at IS G O b d | The mechanism used by the CPython interpreter
to assure that only one thread executes Python

| ﬂte rp reJ[e [bytecode at a time.
Lock™?

More about GIL

e Lock at Interpreter Level
* Prevents true parallelism

* Few Exceptions
 Extensions Modules

* NoGILinI/O
e Past Efforts

Positive Side of GIL

* Thread Safe
 Single-threaded Programs
* Easy integration of C libraries

* Simplified Garbage Collection

Automation Workloads

Percentage

m!/O mMemory mCPU mOther

How to Solve

* Multithreading

* Multiprocessing

* AsynclO

* AsynclO with Multithreading
* AsynclO with Multiprocessing

Multithreading

l multithreading ‘

VAN

Thread 1 Thread 2 Thread3 Thread 4

Global Interpreter Lock
(Threads wait to acquire GIL to proceed)
one thread at a time

CPU
Core 1

* Multiple child threads
* Shared Memory
e But threads waits for GIL

Advantages

* Lesser memory
* Good for Blocking I/O

Multithreading(how)

e Python’s threading module.

e concurrent.futures.ThreadPoolExecutor — abstracts queuing and
distributing tasks to threads.

executors = concurrent.futures.ThreadPoolExecutor(max_workers=10)
jobs = [executors.submit(call, url) for url in urls]

for job in concurrent.futures.as_completed(jobs):
do something with job.result()

Multiprocessing

* Multiple child processes

* Message Passing
* Might require more Memory

compared to multi-threading.

Advantages
* No GIL
e Good for CPU bound

Multiprocessing(how)

* Python’s multiprocessing module

e concurrent.futures.ProcessPoolExecutor — abstracts queuing and
distributing tasks to processes.

executors = concurrent.futures.ProcessPoolExecutor(max_workers=10)
jobs = [executors.submit(call, url) for url in urls)]

for job in concurrent.futures.as_completed(jobs):
do something with job.result()

Caveats of multithreading & multiprocessing

e Context Switches
* No. of Threads/Processes -> No. of Context Switches

* Deciding Optimal number of Threads or Processes
* Varying I/O wait-times

Python AsynclO

I/ 0 and CPU Bound
Operations

Files Read/Write
(File 1/O)

Await / Callback

REST/SOAP API
Pick and Database Queries

Evocut [SSH
task 4 | task 3 | task 2 e », EventLoop (Network 1/0)

Computation

Tasks(Events) Queue Finished (CPU Bound)

Success / Failure

Others

Finished Callbacks

Python AsynclO(how)

import asyncio
from aiohttp import ClientSession

urls = ['https://vmware.com',
"https://vmc.vmware.com']

async def fetch(url):
async with ClientSession() as session:
async with session.get(url) as response:
response = await response.read()
do something with response

loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(fetch(url)) for url in urls]

loop.run_until_complete(asyncio.wait(tasks))

* Python’s asyncio module

* giohttp - Asynchronous
HTTP Client/Server
for asyncio and Python

Advantages
* No wait (Event Driven)
* Good for non-blocking

AsynclO with Multithreading/Multiprocessing

Blocking IO - Run eventloops in a thread-pool:
with concurrent.futures.ThreadPoolExecutor() as pool:
result = await loop.run_in_executor(
pool, blocking_io)
print('custom thread pool', result)

CPU Bound - Run eventloops in a process pool:
with concurrent.futures.ProcessPoolExecutor() as pool:
result = await loop.run_in_executor(
pool, cpu_bound)
print('custom process pool', result)

Summary

* Multithreading — Blocking I/O

* Multiprocessing — CPU Bound

* AsynclO — Non-blocking 1/0O

e AsynclO with Multithreading — Blocking and Non Blocking I/0

* AsynclO with Multiprocessing — CPU Bound with Non Blocking I/O

Reach out to Us

* Nitin Bhojwani —
* Arabinda Das —

mailto:nitinbhojwani@outlook.com
mailto:darabinda@gmail.com

Thank You!

Q&A

