
Canarying Well
Lessons Learned from Canarying Large Populations

(and small ones, too)

Štěpán “Steve” Davidovič, SRE at Google NYC, stepand@google.com
Twitter: @StepanDavidovic



Canarying: What is that?
● “Canary in a coal mine”

○ John Scott Haldane recommended use of canaries in coal mines to detect dangerous gases.
○ Canary breathes faster and is smaller, getting affected faster than a human.



Canarying: What is that?
● “Canary in a coal mine”

○ John Scott Haldane recommended use of canaries in coal mines to detect dangerous gases
○ Canary breathes faster and is smaller, getting affected faster than a human

● Let’s abstract that!
○ We have something large which we don’t want to harm
○ We have something small which we are more okay losing
○ Small thing detects danger, and we’re going into the unknown



Canarying: What is that?
● “Canary in a coal mine”

○ John Scott Haldane recommended use of canaries in coal mines to detect dangerous gases
○ Canary breathes faster and is smaller, getting affected faster than a human

● Let’s abstract that!
○ We have something large which we don’t want to harm
○ We have something small which we are more okay losing
○ Small thing detects danger, and we’re going into the unknown

● And apply to production systems…
○ We have a large service we want to sustain
○ We are okay losing a small chunk of it
○ We deploy production change with unknown impact to that small chunk, to detect danger



What we’re going to talk about
● Canarying as an A/B test of production systems

○ Specifically automated A/B test
○ No humans required to make decision

● Lots of illustrative examples

● Simple rules of thumb to get canarying quickly



What we’re not going to talk about
● Any particular technology to use for canarying (or monitoring, or deployment)

○ Your organization’s technology stack will likely dictate requirements anyway

● Statistics, accurate numbers, accurate math
○ There’s more knowledge on that in the audience :-)
○ Everything is illustration!

● Cover all important aspects of canarying
○ That’d take too long



To Canarying!



Conflicting Incentives



Conflicting Incentives
● Canarying time

○ You want fast rollout, for better development velocity
○ You want slow rollout, to have more data from the canary process



Conflicting Incentives
● Canarying time

○ You want fast rollout, for better development velocity
○ You want slow rollout, to have more data from the canary process

● Population size
○ You want small population, to minimize the impact on your service
○ You want large population, to maximize statistical significance of findings



Conflicting Incentives
● Canarying time

○ You want fast rollout, for better development velocity
○ You want slow rollout, to have more data from the canary process

● Population size
○ You want small population, to minimize the impact on your service
○ You want large population, to maximize statistical significance of findings

● Metric selection
○ You want many metrics, to cover as many failure modes as you can think of
○ You want few metrics, to avoid increased risk of random benign failures
○ Extra: Some metrics need large population, or longer canarying time, or...



Triangle Of Canarying Priorities

Fast Rollout
(short canary)

Small Impact Of Bad 
Canary

Large Metric 
Coverage



Triangle Of Canarying Priorities
● Need to ensure balance between the three goals

● Want fast rollout?
○ Might need to compromise on large coverage, or small blast zone

● Want small impact of a bad canary?
○ Might need to compromise on large coverage or fast rollout

● Want large metric coverage?
○ Might need to compromise on fast rollout or small blast zone to have enough data



Triangle Of Canarying Priorities
● Need to ensure balance between the three goals

● Want fast rollout?
○ Might need to compromise on large coverage, or small blast zone

● Want small impact of a bad canary?
○ Might need to compromise on large coverage or fast rollout

● Want large metric coverage?
○ Might need to compromise on fast rollout or small blast zone to have enough data

● Ignore these → increase risk of flakey canarying
○ As with all rules of thumb, this is not universal truth
○ Importantly, this is not binary! You don’t really “give up” fast rollout, you compromise on it



Canary Population
apples to apples



OpenClipart, “world map” by molumen. License information: 
https://openclipart.org/may-clipart-be-used-comparison



DB

FE FE FE

OpenClipart, “world map” by molumen. License information: 
https://openclipart.org/may-clipart-be-used-comparison



DB

FE FE FE
~20ms

~120ms

OpenClipart, “world map” by molumen. License information: 
https://openclipart.org/may-clipart-be-used-comparison



DB

FE FE FE
~20ms

~120ms

Control Canary

OpenClipart, “world map” by molumen. License information: 
https://openclipart.org/may-clipart-be-used-comparison



Time

Latency

T0
T+24h

Example: Geographical distribution

Canary

Control



Time

Latency

T0
T+24h

Example: Geographical distribution

Canary

ControlLook at the 
latency!



Example: Geographical distribution
● We’ve seen a 100ms increase in latency for our canary!



Example: Geographical distribution
● We’ve seen a 100ms increase in latency for our canary!

Hang on a minute…

● We have observed that new release and different continent have a significant 
slowdown

○ Maybe not what we wanted to measure?



Takeaways
● It’s important to compare apples to apples

○ Better solution here would be to compare within a continent
○ Or to take slice of service in each continent, and compare it within the continent

● Your goal is to judge whether the production change is good
○ ...but what other things have you accidentally picked up in the process?



Canary Population
high variance behavior



Time

Latency

T0
T+24h

Example: High variance among replicas



Time

Latency

T0
T+24h

Example: High variance among replicas



Time

Latency

T0
T+24h

Example: High variance among replicas

Canary



Time

Latency

T0
T+24h

Example: High variance among replicas

Look at the 
latency!

Canary



Takeaways
● Canary selection process is a big source of potential false positives

○ What’s the probability of selecting enough outliers to sway the canary test?



Takeaways
● Canary selection process is a big source of potential false positives

○ What’s the probability of selecting enough outliers to sway the canary test?

● Selection process need not be random to cause problems
○ Consistently going from first replica to last replica is random in relation to the metrics!
○ Selection process is often oblivious to the metrics
○ Worse: There is often no single good solution to canary selection!



Takeaways
● Canary selection process is a big source of potential false positives

○ What’s the probability of selecting enough outliers to sway the canary test?

● Selection process need not be random to cause problems
○ Consistently going from first replica to last replica is random in relation to the metrics!
○ Selection process is often oblivious to the metrics
○ Worse: There is often no single good solution to canary selection!

● Before/after information can help, but it has its own pitfalls
○ More on that later



Time

Latency

T0
T+24h

Example: Bimodal distribution
(Two server platforms?)



Time

Latency

T0 T+24h

Example: Two metrics, different outliers

Time

Errors

T0 T+24h

Canary

Canary



Time

Latency

T0 T+24h

Example: Two metrics, different outliers

Time

Errors

T0 T+24h

Canary

Canary



Takeaways #2
● The input data can be almost arbitrarily distributed

○ For multimodal data distributions, clustering methods may be very helpful

● Metric distribution depends both on population and metric
○ Example: crashes may be the same regardless of platform, latency might vary greatly

● Any two metrics can follow different distributions for the same population
○ Decisions on handling data are on {population pair, metric distribution} basis
○ No silver bullet for the entire population

■ Unless you have some domain specific prior knowledge…

● Your canary process might need to drop some metrics tests
○ There might not be a single canary selection that avoids outliers for all metrics!



Canary Duration
testing post-startup Behavior



Time

Latency

T0
T+24h

Example: Service With Cache

Canary restarted, now 
has cold cache



Time

Latency

T+24h

Example: Service With Cache

Is this okay?

T0 T+1h



Time

Latency

T+24h

Example: Service With Cache

Look at the 
latency!

T0 T+1h



Example: Service With Cache
● But can’t I just restart some fraction of control too?

● Then I’m comparing apples to apples...



Time

Latency

T0
T+24h

Example: Service With Cache, restarted

Let’s restart both...



Time

Latency

T0
T+24h

Example: Service With Cache, restarted

Looks good!

T+1h



Time

Latency

T0
T+24h

Example: Service With Cache, restarted

Hang on a minute...



Time

Latency

T0
T+24h

Example: Service With Cache, restarted

Looks like 
regression!

T+?h T+?h



Takeaways
● Restarting fraction of control often doesn’t yield good results

● You are deciding the fate of apples by comparing oranges to oranges
○ Apples are how the service operates, oranges how it starts up
○ It needs to be connected to the thing you actually meant to decide

● Instead: Identify “point of stable operation” and canary from there
○ This will take extra time in your release process, but it’s unavoidable if you want to measure 

the actual service behavior, rather than its post-startup behavior



Canary Duration
testing long-term trends



Time

RAM
(GB)

T0
T+24h

Example: Memory leak canary



Time

RAM
(GB)

T0
T+24h

Example: Memory leak canary

limit



Time

RAM
(GB)

T0
T+24h

Example: Memory leak canary

limit



Time

RAM
(GB)

T0
T+24h

Example: Memory leak canary

limit

T+1h

Is this okay?



Time

RAM
(GB)

T0
T+24h

Example: Memory leak canary

limit

T+1h

Maybe?



Takeaways
● Detecting memory leaks with canarying may require long canarying

○ Pushes us away from “fast rollout (short canary)”

● Not all memory-based tests require long canary
○ What if your canary unexpectedly has 2x memory usage than your control right after start?
○ Easy to detect quickly!

● Canarying doesn’t obviate the need to monitor
○ Recall canarying is time-limited!



Canary Duration
before/after test



Before/after test
● With all these problems, maybe I can just quickly deploy?

○ We have fast rollback mechanism, we won’t hurt service terribly poorly...



Time

Latency

T0
T+24h

Example: Before/after test



Time

Latency

T0
T+24h

Example: Before/after test



Time

Latency

T0
T+24h

Example: Before/after test

Canary

Control



Example Takeaway
● Before/after tests often have us compare “apples to stale apples”

● Global comparison (e.g. 5% canary in each region) not always helpful
○ You may smooth out day cycle, but only partially

○ You may have different usage patterns in different regions

● Smaller-scale issues than day cycle include:
○ Brief traffic spikes
○ Machine deaths

● Not always the wrong choice! But be very cautious.
○ Catastrophic canary = loss of entire service until you can roll back!



Increasing Coverage
by adding more tests



Example: Compound probability
● Imagine you have 1% failure rate on each of your canary tests.

○ Might be false positive, might be true positive, doesn’t matter for this example.
○ Some might claim 1% false positive rate would be pretty nice score.

● If a metric fails the canary test, human needs to take a look.



Example: Compound probability
● Imagine you have 1% failure rate on each of your canary tests.

○ Might be false positive, might be true positive, doesn’t matter for this example.
○ Some might claim 1% false positive rate would be pretty nice score.

● If a metric fails the canary test, human needs to take a look.

P(single test failure) = 1%



Example: Compound probability
● Imagine you have 1% failure rate on each of your canary tests.

○ Might be false positive, might be true positive, doesn’t matter for this example.
○ Some might claim 1% false positive rate would be pretty nice score.

● If a metric fails the canary test, human needs to take a look.
● You have 100 metrics to test.

P(single test failure) = 1%
P(at least one test failure out of 100) = 1 - P(no test failure) = 1 - (1 - 1%)100

= 1 - (0.99)100 ~= 1 - 0.366 ~= 63.4%



Example: Compound probability
● Imagine you have 1% failure rate on each of your canary tests.

○ Might be false positive, might be true positive, doesn’t matter for this example.
○ Some might claim 1% false positive rate would be pretty nice score.

● If a metric fails the canary test, human needs to take a look.
● You have 100 metrics to test.
● Two out of three releases will need human inspection!



Example: Compound probability
● This was all a lie!

○ Many assumptions made which are untrue.
○ Example: If your release is bad, failures are likely correlated, not independent.

● But it’s a useful lie
○ “All models are wrong, but some are useful” (George Box, statistician)
○ Maybe you have 1% false positive ratio in your system? Or 0.1%?
○ It’s a simplified analysis of achievability of your goals



Example: Compound probability
● You are likely able to increase accuracy of your test by giving it more data

○ Which means more time and/or larger population



Beware Meta Analysis
● It’s easy to bring meta analysis in:

○ “But what if I require that any 10% checks need to fail before I bring a human?”

● This has flaws, and might be a slippery slope:
○ Why 10%? Our canary checks are anchored in expected system behavior, 10% is not
○ Checks are not always of equal importance, so next on our slippery slope is adding weights

■ How do you decide those?
○ Slippery slope leads to tuning magic numbers not anchored in either goals or statistics



Prefer Few Metrics
● Key question:

“What are the 3 metrics that most clearly indicate service health?”



Prefer Few Metrics
● Key question:

“What are the 3 metrics that most clearly indicate service health?”

● Some of them should connect
to your service’s SLI!

● Doesn’t mean you need 3 metrics,
just that you can test for many
issues with just a few



So in conclusion...



Canary In These 3 Simple Steps
1. Choose only few good metrics

○ They need to represent measure of problems in your service
○ They should be connected to your SLI

2. Ensure representative population
○ Random processes can be bad for you, increasing false positives

3. Compare apples to apples
○ If metric exhibits post-startup deviant behavior, maybe wait a bit
○ If you are deployed globally with mutually different behavior, maybe compare within regions



Canary In These 3-ish Simple Steps
1. Choose only few good metrics

○ They need to represent measure of problems in your service
○ They should be connected to your SLI

2. Ensure representative population
○ Random processes can be bad for you, increasing false positives

3. Compare apples to apples
○ If metric exhibits post-startup deviant behavior, maybe wait a bit
○ If you are deployed globally with mutually different behavior, maybe compare within regions

4. Multi-stage canarying
○ Fist canary with very high confidence metrics, small population, fast canary -- fail fast
○ If that passes, do a larger population, longer duration, allowing you to use “worse” metrics



Takeaways
● Canarying can be easy and approachable.

○ Just follow three (or four) simple steps...
○ ...and then iterate on them to find what’s best for you & your systems!

● Recall triangle of Canarying Priorities

● Statistics foundations are useful

● Some of the questions can be
automated away with sufficiently
advanced software

Fast Rollout
(short canary)

Small Impact Of Bad 
Canary

Large Metric 
Coverage

?


