
Safe Client Behaviour
Ariel Goh <gwy@google.com>
Sebastian Kirsch <skirsch@google.com>
SRECon18 Asia, Singapore, June 6-8 2018

mailto:gwy@google.com
mailto:skirsch@google.com

client server

2 Billion
monthly active Android devices

Source: Google announcement, May 2017

https://twitter.com/Google/status/864890655906070529

2 … 20 … 200?
servers in your cloud service?

server
client server

client

client
client

client
client

client

client

client

client

client

client

client

client client
client

client

client
server

clients ⋙ servers

Safe client behaviour
=

“do not DDoS”

Which requests
are
unsafe?

Which requests
are potentially
unsafe?

What’s the worst
that can happen?

Source: https://commons.wikimedia.org/wiki/File:Building_7_fire.jpg Licensed under CC BY-SA 2.5

https://commons.wikimedia.org/wiki/File:Building_7_fire.jpg

What’s the best
that can happen?

Ideal server-side request pattern

Rules for safe clients

Rule 1:
Jitter Everything!

jitter /ˈdʒɪtə/ n.
the deviation from true
periodicity of a presumably
periodic signal.

jitter /ˈdʒɪtə/ v.
add randomness to the
periodicity of a periodic
signal.

Worst case: Synchronized startup, no jitter.

period = 300 // Once every 5 minutes

while true:

 send_rpc()

 wait(period)

Worst case: Synchronized startup, no jitter.

Injecting jitter: Randomly change the periodicity.

period = 300 // Once every 5 minutes

while true:

 send_rpc()

 wait(period * random(.5, 1.5))

Synchronized startup, jitter on future attempts

Ideal case: Startup jittered, future attempts jittered.

period = 300 // Once every 5 minutes

wait(period * random(.5, 1.5))

while true:

 send_rpc()

 wait(period * random(.5, 1.5))

Ideal case: Startup jittered, future attempts jittered.

Startup oscillations from jitter.

 next_execution = truncate(next_execution, period)

 next_execution += random(1.0, 2.0) * period

 wait_until(next_execution)

 send_rpc()

while true:

 period = 300 // Once every 5 minutes

 next_execution = now()

Jittering without startup oscillations: Jitter execution time, not period.

Jittering without startup oscillations: Jitter execution time, not period.

 next_execution += random(1.0, 2.0) * period

 next_execution = truncate(next_execution, period)

 wait_until(next_execution)

 send_rpc()

while true:

 period = 300 // Once every 5 minutes

 next_execution = now()

Jittering without startup oscillations: Introducing synchronization by mistake.

Jittering without startup oscillations: Introducing synchronization by mistake.

Rule 2:
Don’t Retry!*

* Terms and conditions apply.

Fixed retry period, no jitter.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay)

 success = send_rpc()

 wait(period)

Fixed Retry Period, no jitter: Request spike and inadvertent synchronization

Fixed retry period with jitter.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay)

 success = send_rpc()

 wait(period * random(.5, 1.5))

Fixed retry period with jitter: No inadvertent synchronization

Jittered retry period, periodicity not jittered.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay * random(.5, 1.5))

 success = send_rpc()

 wait(period * random(.5, 1.5))

Jittered retry period, periodicity not jittered: Request spikes remain.

Rule 3:
If you retry,
back off!

Fixed retry period revisited: Sharp rise in request rate!

Retry with exponential back-off.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay)

 success = send_rpc()

 delay = delay * 2

 wait(period * random(.5, 1.5)

Exponential back-off to limit request spikes.

Retry with exponential back-off and jitter.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay * random(.5, 1.5))

 success = send_rpc()

 delay = delay * 2

 wait(period * random(.5, 1.5)

Exponential back-off with jitter: Smoother back-off

Retry with exponential back-off and jitter; retries capped.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success && delay <= period:

 wait(delay * random(.5, 1.5))

 success = send_rpc()

 delay = delay * 2

 wait(period * random(.5, 1.5)

Retry with exponential back-off and jitter; retries capped.

Retries: Terms and Conditions

● Don’t retry by default.
● Back off exponentially on retries.
● Jitter retries.
● Retry on specific error conditions:

○ Don’t retry on client errors (HTTP 400 errors.)
○ Do retry on server errors (HTTP 500 errors.)
○ Do retry on network errors.
○ Do retry (carefully) on timeouts.
○ Don’t retry on out of quota!

Effects of partial
failures

25% failure rate, fixed retry period: High rate of retries

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay)

 success = send_rpc()

 wait(period)

25% failures with exponential back-off: Error rate subsides, occasional error spikes.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay)

 success = send_rpc()

 delay = delay * 2

 wait(period * random(.5, 1.5)

25% failure, jittered back-off: Fewer synchronized errors spikes.

while true:

 period = 300; delay = 10

 success = send_rpc()

 while not success:

 wait(delay * random(.5, 1.5))

 success = send_rpc()

 delay = delay * 2

 wait(period * random(.5, 1.5)

Safer clients: Move control to the server!

Implement Retry-After header in client and server.

Make sure to jitter retry periods on the server side.

Remote configure your clients!

Configure periodicity remotely.

Maintain a remotely configured client feature blacklist.

Safer clients: Expose information to server

● More information at server = more granular responses
● Tag requests with

○ Client name and version
○ Feature that triggered the request
○ Severity of failing the request
○ Retry or initial request?

● Possible server responses:
○ Prioritize interactive requests
○ Drop background requests
○ Avoid dropping requests known to trigger a retry storm
○ Work around client bugs

Safer Microservices

Safer microservices: Retry budgets

Limit retries to a percentage of total outgoing requests

Example: Only 10% of outgoing requests can be retries.

Prevents retries from completely crowding out legitimate requests.

Safer microservices: Adaptive Throttling

Reject new requests locally (at the client) based on rejection probability.

Reduces load on the server for rejected requests.

See https://landing.google.com/sre/book/chapters/handling-overload.html

https://landing.google.com/sre/book/chapters/handling-overload.html

Summary

1. Jitter everything!
2. Don’t retry!
3. If you retry, back off!
4. Move control to the server.
5. Expose info to the server.
6. Use retry budgets.
7. Use adaptive throttling.

Q&A

See also https://landing.google.com/sre/book/chapters/handling-overload.html

https://landing.google.com/sre/book/chapters/handling-overload.html

