
POMP: Postmortem Program
Analysis with Hardware-Enhanced

Post-Crash Artifacts
Jun Xu1, Dongliang Mu12, Xinyu Xing1, Peng Liu1, Ping Chen1, Bing Mao2

1. Pennsylvania State University
2. Nanjing University

Grim Reality
• Despite intensive in-house software testing, programs inevitably contain defects
• Accidentally terminate or crash at post-deployment stage
• Exploited as security loopholes

• Software debugging is expensive and needs intensive manual efforts
• Debugging software cost has risen to $312 billion per year globally [1]
• Developers spend 50% of their programming time finding and fixing bugs [2]

9/1/17 Presenter - Xinyu Xing 2

[1] http://silvaetechnologies.eu/blg/216/debugging-software-cost-has-risen-to-$312-billion-per-year-globally
[2] https://www.roguewave.com/company/news/2013/university-of-cambridge-reverse-debugging-study

Techniques facilitating software debugging
• Heavyweight technique
• Program tracing
• Relay debugging

• Lightweight technique
• Examine stack trace in debugger (e.g. [1])
• Audit execution logs (e.g., [2])
• Analyze crash dump (e.g., [3])

Cost Capability
Heavyweight

tech.
High overhead High

effectiveness
Lightweight

tech.
Low overhead Low

effectiveness

9/1/17 Presenter	- Xinyu	Xing 3

Trace
execution

Log program
states

Heavyweight
tech.

Lightweight
tech.

[1] Liblit et al. Building a Better Backtrace: Techniques for
Postmortem Program Analysis. TR’02
[2] Yuan et al. Improving Software Diagnosability via Log
Enhancement. ASPLOS’11
[3] Cui et al. RETracer: Triaging Crashes by Reverse Execution
from Partial Memory Dumps. ICSE’16

Ultimate Goals
• Automated
• Automating software failure diagnosis without manual efforts

• Accurate
• Do not mistakenly pinpointing the root causes of software failure

• Nonintrusive (Runtime overhead free)
• Introducing no runtime overhead at post-deployment stage

9/1/17 Presenter	- Xinyu	Xing 4

POMP for Postmortem Program Analysis
• POMP diagnoses software crash using software crash report (core dump)
• POMP introduces no overhead at a running software because a crash report is

created only when a program accidentally terminates

9/1/17 Presenter	- Xinyu	Xing 5

Core dump
• In general, a core dump carries information such as
• Memory snapshot
• Registers
• Others (e.g., signals received)

• A core dump provides only a partial chronology of how a program reached a crash
site [3]
• A core dump is barely used a source for automated software failure diagnosis

9/1/17 Presenter	- Xinyu	Xing 6

[3] Liblit et al. Building a Better Backtrace: Techniques for Postmortem Program Analysis

Hardware-enhanced Core dump
• POMP enhances a core dump through

Intel Processor Trace (PT)
• Intel PT enables execution tracing with

nearly no overhead
• A hardware-enhanced core dump

unveils not only a crashing state but
more importantly captures the control
flow a crashing program follows.

9/1/17 Presenter	- Xinyu	Xing 7

A1: push ebp
A2: mov ebp, esp
A3: sub esp, 0x14
A4: mov [ebp-0xc], test
A5: lea eax, [ebp-0x10]
A6: push eax
A7: call child
A8: push ebp
A9: mov ebp, esp
…

Execution trace
Re

gis
ter

eax 0x02

ebx 0xff28

esp 0xff14

M
em

 Ad
dr

es
s

0xff1c 0x02

0xff18 0x01

0xff14 0x00

0xff10 0xff18

Memory state

Roadmap

9/1/17 Presenter	- Xinyu	Xing 8

• Design overview
• Technical challenge
• Technical details
• Evaluation in real world crashes
• Summary

Example of Program Failure Debugging

9/1/17 Presenter	- Xinyu	Xing 9

Crash

Root
Cause

Data flow

Overview of Automated Program Failure Diagnosis
1) Reversely execute an instruction trace (starting from the crash site)
2) Reconstruct the data flow that a program followed prior to its crash
3) Examine how a bad value was passed to the crash site

9/1/17 Presenter	- Xinyu	Xing 10

Re
ve

rse
ly

ex
ec

ut
ing

Reverse Execution – Invertible Instructions

9/1/17 Presenter	- Xinyu	Xing 11

eax-10

eax+216
eax+1

eax-1

add eax 10

sub eax 216
dec eax

inc eax

Reverse Execution – Non-invertible Instructions

9/1/17 Presenter	- Xinyu	Xing 12

mov eax 0x5

xor ecx ecx

0x5

Reverse Execution with Backward Data Flow Analysis

9/1/17 Presenter	- Xinyu	Xing 13

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

L5. mov ebx [eax]
Re

gis
ter

s

eax 0x80

ebx 0x95

ecx 0x77

edx 0x32

edi 0x45

esi 0x22

…

M
em

or
y A

dd
res

s 0x22 0xE8

0x45 0x22

0x77 0xB7

0x80 0x95

…

ebx == edx before
the execution of L5

0x32

Challenge – Memory Alias Issue

9/1/17 Presenter	- Xinyu	Xing 14

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

L5. mov ebx [eax]
Re

gis
ter

s

eax 0x80

ebx 0x95

ecx 0x77

edx 0x32

edi 0x45

esi 0x22

…

M
em

or
y A

dd
res

s 0x22 0xE8

0x45 0x22

0x77 0xB7

0x80 0x95

…

0x32

ecx == [edi] before
the execution of L4

0x22

Challenge – Memory Alias Issue

9/1/17 Presenter	- Xinyu	Xing 15

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

L5. mov ebx [eax]
Re

gis
ter

s

eax 0x80

ebx 0x95

ecx 0x77

edx 0x32

edi 0x45

esi 0x22

…

M
em

or
y A

dd
res

s 0x22 0xE8

0x45 0x22

0x77 0xB7

0x80 0x95

…

0x32

0x45

edi == ecx right before
the execution of L4

Pointing
to the same

memory
region

Hypothesis Testing
1) Making two hypotheses for each pair of memory
2) Constructing use-define chain and extracting constraints under each hypothesis
3) Testing each of the hypotheses by using the constraints in each set

9/1/17 Presenter	- Xinyu	Xing 16

Hypothesis ⓵
[R1] and [R2]

are alias

Hypothesis ⓶
[R1] and [R2]
are NOT alias

R3=[R2]
[R1]=R4

…

Constraint
set

[R2]=R3
[R1]=R4

…

Constraint
set

use: R2

def: R3=[R2]

def: [R1]=R4

…

…
Use-define chain

def: ecx=0x77

Hypothesis Testing

9/1/17 Presenter	- Xinyu	Xing 17

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

Hypothesis ⓵
NOT alias

Hypothesis ⓶
alias

use: edx

def: ebx=edx

def: [ecx]=esi

use: esi

use: ecx

def: ecx=[edi]

use: edi

use: [edi] use: [edi]

ecx≠edi
ecx=[edi]
[ecx]=esi

def: ecx=0x77

Hypothesis Testing

9/1/17 Presenter	- Xinyu	Xing 18

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

Hypothesis ⓵
NOT alias

Hypothesis ⓶
alias

use: edx

def: ebx=edx

def: [ecx]=esi

use: esi

use: ecx

def: ecx=[edi]

use: edi

use: [edi] use: [edi]

ecx=[edi]
ecx≠edi

[ecx]=esi

ecx=[edi]
ecx=edi

[ecx]=esi

Hypothesis Testing

9/1/17 Presenter	- Xinyu	Xing 19

L1. mov ebx edx

L2. mov ecx [edi]

L3. mov [ecx] esi

L4. mov ecx 0x77

Hypothesis ⓵
NOT alias

Hypothesis ⓶
alias

ecx=[edi]
ecx≠edi

[ecx]=esi

ecx=[edi]
ecx=edi

[ecx]=esi

Re
gis

ter
s

eax 0x80

ebx 0x95

ecx 0x77

edx 0x32

edi 0x45

esi 0x22

…

M
em

or
y A

dd
res

s 0x22 0xE8

0x45 0x22

0x77 0xB7

0x80 0x95

…

0x32
????

Goal: Restore the value of ecx
prior to the execution of L4

0x22

Limitations of Hypothesis Test and Strategy (1)
• Limitation: Not having sufficient evidences to reject a

hypothesis because
• Execution trace includes system calls
• POMP does not trace execution into OS kernel
• POMP may be unable to perform accurate data flow analysis

• Strategy: Treat some system calls (e.g., recv / write) as a
definition which intervenes all the memory access
propagation because
• a non-deterministic memory region can potentially overlap

with any memory regions in user space

9/1/17 Presenter	- Xinyu	Xing 20

Limitations of Hypothesis Test and Strategy (1)

use: [edi]

def: ecx=[edi]

def: recv

…

…

def: [ecx]
…

Limitations of Hypothesis Test and Strategy (2)
• Limitation: Require intensive

computation to reject/accept a
hypothesis because
• One hypothesis test could involve other

hypothesis tests, making hypothesis test a
recursive procedure

• In theory, recursive hypothesis test could
potentially introduce a computation
complexity of O(nm)

• Strategy: Perform a recursive hypothesis
test with limited number of recursion
depths (m=2 in our implementation)

9/1/17 Presenter	- Xinyu	Xing 21

use: [R1]

def: [R4]

use: [R3]

…

…

def: [R2]
…

Alias?

Alias?

Limitations of Hypothesis Test and Strategy (2)
• Limitation: Require intensive

computation to reject/accept a
hypothesis because
• One hypothesis test could involve other

hypothesis tests, making hypothesis test a
recursive procedure

• In theory, recursive hypothesis test could
potentially introduce a computation
complexity of O(nm)

• Strategy: Perform a recursive hypothesis
test with limited number of recursion
depths (m=2 in our implementation)

9/1/17 Presenter	- Xinyu	Xing 22

[R1] & [R2]:
alias

[R1] & [R2]:
NOT alias

[R3] & [R4]:
alias

[R3] & [R4]:
NOT alias

[R3] & [R4]:
alias

[R3] & [R4]:
NOT alias

Evaluation of POMP
• 31 program crashes resulting

from real world vulnerabilities:
• Stack, heap & integer overflow
• Use After Free and invalid free
• Null pointer dereference

• Crashing program ranges from
• Sophisticated software (e.g., GBD)
• Lightweight software (e.g.,

corehttp)

9/1/17 Presenter	- Xinyu	Xing 23

Evaluation of POMP (cont.)

9/1/17 Presenter	- Xinyu	Xing 24

Evaluation of POMP (cont.)

9/1/17 Presenter	- Xinyu	Xing 25

Observation 1:
Ø POMP marks slightly more

instructions than the ones that
truly contribute to program crash;

Observation 2:
Ø Compared with the execution

trace (from a fault point to a
crashing site), POMP significantly
reduces the amount of
instructions that software
developer and security analysts
need to manually examine.

Evaluation of POMP (cont.)

9/1/17 Presenter	- Xinyu	Xing 26

Observation 3:
Ø For 2 crashes, POMP fails to include failure

root cause into the instruction set identified
by POMP.

It contains a system call (sys_read) ; system call writes a
data chunk to a certain memory region; reverse execution
fails to determine its location and size

Integer overflow traps the execution into a long-term
iteration; POMP fails to include the root cause instruction
into the execution trace restored.

Evaluation of POMP (cont.)

9/1/17 Presenter	- Xinyu	Xing 27

Observation 4:
Ø For most test cases, POMP takes seconds or

tens of minutes for program failure
diagnosis; for some other test cases, it could
take several hours to process.

Summary
• POMP can reversely execute a crashing program and restore the memory

footprints
• The memory footprints restored can be used for data flow construction and

program failure diagnosis
• POMP reduces the code space that software developers and security analysts

need to manually examine, which significantly facilitates program diagnosis
failure
• POMP can handle program crashes including those resulting from memory

corruption vulnerabilities

9/1/17 Presenter	- Xinyu	Xing 28

Thank you very much!
POMP source code is available at https://github.com/junxzm1990/pomp.git

9/1/17 Presenter	- Xinyu	Xing 29

