
Hello and welcome 👋 Not a pitch for a new discipline or
conference - there will be no FREcon, at least not organised
by me!

I’m here to talk about some work Shopify has done in the last
little while to get a better handle on our cloud infra costs -
how we brought them down, and how we’re going to keep a
grip on them.

Taming Cloud Costs

Financial Resiliency Engineering

👋

Who am I? Darren Worrall, sysadmin type things for 20 years.
Starting with computers under tables, moving through
computers in racks, to now herding lots of computers in the
cloud, and increasingly, groups of people too.

Working at Shopify for 6+ on Infrastructure / Production
Engineering

Shopify is a commerce platform - we build our systems so
buyers can browse storefronts, place orders, complete
checkouts, and be the backend for the merchants business -
fulfilment, marketing, inventory etc

🤔

Why? SRE gets involved with the non-functional
requirements of our systems - availability, performance,
security etc - I think we need to have efficiency on that list -
specifically cost efficiency. Like the others, if we don’t get it
right - operate sustainably - then eventually we will fail to
meet our business objectives.

Context about Shopify. We have a Ruby monolith at the core
of the app. There are several important infrastructure
components to support that Ruby app up and downstream -
HTTP routing and load balancing, sharded relational
databases, streaming data, caching, proxies for these things
etc

And there are _also_ other large applications we consider tier
1 each with their own upstream and downstream
dependencies. And beyond that we a have a long tail -
hundreds - of smaller services.

All that runs mostly on Kubernetes on GCP - hundreds of
clusters, distributed globally. The detail we will talk about here
will apply to that stack, but the principles should apply to any
cloud provider or stack. I hope a lot of this will be useful and
applicable.

Before this our efficiency efforts were a bit ad-hoc and had
varying cycle times. Corey Quinn, cloud economics
superstar, has talked about this process looking like a saw
tooth - slow rises then sharp declines as attention and effort
is spent to interrogate the bill - and that this is to be expected.
The cloud is a utility.

Public domain image:
https://commons.wikimedia.org/w/index.php?curid=84873213

https://commons.wikimedia.org/w/index.php?curid=84873213

For us, if we’re being honest, our efforts were not very clean
or consistent. Depending on the business priorities at the
time, efficiency had varying priority.

Image By Warren Miller - Warren Miller: Saw Manual, p.2 The
Crosscut Saw. Published by the USDA Forest Service, June
1977., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=2741473

https://commons.wikimedia.org/w/index.php?curid=2741473

And so our story begins with someone sounding the alarm.

Leadership make clear that cost savings are a priority, a
sense that we are not getting good value for everything we’re
spending. How do we start?

Chapter 1:
🔥🚨

• Clear messaging from leadership brings a lot of attention

• Set an ambitious, meaningful target

• Prioritize, quickly

Getting organised, getting effective

Loud and clear messaging from leadership brings people to
the table, this is an opportunity we want to maximise.

We set a target in absolute dollar terms - bring the monthly
spend down to between X and Y - a meaningful reduction we
could rally an effort around, not 2% - 5%. There was some
concern that setting an absolute target could risk people
cutting too deep or in the wrong places, but we trusted that
we would get pushback if people felt that we were impacting
our resiliency boundaries - and we have our SLIs and SLOs
to help us see where those are - and for this effort really
wanted to set the expectation that we were really looking to
move the needle. Setting an unambiguous and amitious goal
was important to achieve that.

We know we needed to prioritise the best work, and that we
needed to do that quickly. We wanted to understand what
work was being done so we could measure its effectiveness -
we don’t want teams of people spending days or weeks to
save $50/day - but we can’t take long to do this. Capitalize on

momentum and deliver.

In the great traditions of ad-hoc projects, it was time for a
spreadsheet

Cast a wide net for ideas, but time box it e.g. a week. Write
down everything you are doing now in response to the call
from leadership, or could do in the near future with some
priority shifting. We quickly got a lot of ideas on this list,
teams had a pretty good idea where their low hanging fruit
was, and where there was good scope to optimize.

T-Shirt size S(1-2 days)
M(1-2 weeks)
L(2-4 weeks)
XL(1+ month)

And also: estimate the savings. There were some other fields
on this sheet, e.g. GCP project, a link to a tracking issue,
more notes

So we take a short period to aim, and tell people to… pick the
best options from this list and go do the things.

Crowdsource ideas

Idea/Opportunity Team Effort Size Estimated
monthly savings

THING Network S $$

THING Database S $$$$

THING App Platform L $

THING Streaming M $$

THING Data XL $$$

Things started happening immediately - it was actually pretty
chaotic, which I’m sure was somewhat intentional. There was
a real buzz about the work, turns out It was not hard to get
people involved, lots of engineers actually like optimization
work. Lorin talked about this yesterday - about the lack of
time to reflect - and to some people this was
permission/license to go and look at what was done and to try
to make it better.

1 week, 2 weeks, 3 weeks go by - the small and medium
sized work starts to land. Optimization work was happening in
every corner of the infrastructure org, but the impact of that
work was inconsistent - some effort was delivering the
expected results, but others not. Some of this was expected -
when engineers started doing the work, they learned some
things and it turned out that they couldn’t remove as much
resource as they expected at the outset. But sometimes the
engineers were surprised too - everything went as they
expected, but the savings did not materialize.

itshappening.gif

https://www.usenix.org/conference/srecon23americas/presentation/hochstein

One reason we found for that was that individuals and teams didn’t
have enough context to accurately size their opportunities; not the
scale of the work - those turned out to be pretty accurate - but
the impact on the bill.

Key context teams were missing: what the real costs of things were
- we have discounts, CUDs etc - and the size of their workloads
relative to the rest of the infra.

We needed better tools to help with this.

A quick diversion into flamegraphs - let’s define this as a
collective noun for performance visualisation tools. Taking
hierarchical tracing data and letting us explore and
understand them.

<Flamegraphs 🔥📈>

Folded stack is one example of an intermediate
representation of trace data - puts stack traces on a single
line, with functions separated by semicolons, followed by a
space and then a unit - e.g a count.

This intermediate format can be read by a bunch of tools e.g.
flamegraph.pl https://github.com/brendangregg/FlameGraph
/ht Brendan Gregg

Folded stack

start_server;func_a;func_b;func_c 1
start_server;func_a;func_d 2
start_server;func_a;func_c 4

https://github.com/brendangregg/FlameGraph

This intermediate format can be read by a bunch of tools e.g.
flamegraph.pl https://www.speedscope.app/

Folded stack

https://www.speedscope.app/

We typically use these tools to understand how our
applications are behaving and performing - this is an example
request profile from https://github.com/Shopify/shipit-engine

Are we spending time where we expect, or are there things
we can optimize.

https://github.com/Shopify/shipit-engine

So, profiling tools + flamegraphs are useful for exploring
hierarchical data to identify areas for optimisation - expensive
operations 🤔 Someone on our team had the inspired idea to
see if we could turn our existing perf tools to our billing data.

</Flamegraphs 🔥📈>

So we quickly figured out how we could export a view of our
billing and service data into one of these intermediate formats
and turned our performance tools on them - it worked really
well.

These names and SKUs are completely fabricated - fever
dreams of a random number generator.

Same data but converted to pprof. Again, this data is
completely fictional, pay no attention to the names or
numbers. We can quickly see that compute engine is more
than half the bill here, and the fictional GPU SKU is the
biggest part of that.

This turned out to be a great find - engineers were able to
use tools they were already familiar with to get the context
they needed to make better estimates.

Teams were good at estimating t-shirt sizes, but less good at
estimating opportunity size - e.g. missing context like
discounts we have negotiated. Items were being completed
but impact varied.

We did a second pass, teams used the new tools to
reevaluate their ideas to make different decisions on priority,
and bring resource reduction estimates instead. We worked
with engops/finops to estimate the savings ourselves.

Planned comms around a big push/new sprint - keep the
momentum going, refocus efforts on work items we were
more confident would be impactful.

This approach really accelerated the impact, bending the
daily spend curve downward. We were much more successful
in identifying the best ideas to work on.

So in general, what sort of opportunities turned out to be the

Crowdsource ideas

Idea/Opportunity Team Effort Size
Revised
savings
estimate

Next sprint
priority?

THING Network S $$ ✅
THING Database S $$$$ ✅
THING App Platform L $$

THING Streaming M $$ ✅
THING Data XL $$$

right things to focus on?

Sounds easy to say and obvious, but is something we had to
take a beat to sort out. Without a bit of thought and focus it’s
very easy to spend effort on things that aren’t actually
impactful for what you’re trying to achieve.

The large things were obvious and well known. Incremental
wins on these systems are impactful in their own right, but
also in our case unlocked some even bigger wins, such as
removing two whole cluster per region for this particular app.

We were able to find projects/clusters/nodepools with low
utilisation pretty easily from the center, but we had to cast a
wide net through the org to find the people with the right
context to find where the real opportunities were. We couldn’t
know e.g. some experimental infra could be turned off, when
we found the right person with that context we could make
that change happen pretty quickly.

Largest
Where incremental improvements can translate

to large wins in absolute terms

Under-utilized
Where low hanging fruit can be found, but be mindful of

intentionally underused infra (e.g. for resiliency)

Focus on what matters

Chapter 2: Biggest wins
🏆

This is probably specific to our org, but I think it will be
interesting regardless, and maybe some lessons will apply to
you.

First win: The bin packing problem - extreme Tetris.

You have a number of things of varying size, that we need to
efficiently pack into a finite number of bins of fixed size.

For us this means packing container based workloads -
Kubernetes pods - onto compute nodes. How well (or not!)
this is done can have a large impact on efficiency.

Image credit: Glynn Clements. GPL,
https://commons.wikimedia.org/w/index.php?curid=3702251

Bin packing!

Glynn Clements. GPL, https://commons.wikimedia.org/w/index.php?curid=3702251

• GKE cluster autoscaler set to Optimize-Utilization

• Reducing unallocated resources

• Rightsizing resource requests

Better bin packing

GKE autoscaler - add or remove nodes to match scheduling
demands of pods. It has different profile which influence its
behaviour, which are a bit of a black box. Prioritises
increasing utilisation/allocation when scheduling new pods -
rather than evenly distributing workloads - and more
aggressively evict pods to achieve the first goal, so removes
un[der]-utilised nodes can be removed.

Trade-offs:
● More pod churning, check your disruption budgets
● Higher utilization might impact workloads (i.e. resource

requests might be too low)
● May not play well with stateful workloads

Unallocated resources - CPU and memory on a node which
is not requested by a workload
Rightsizing - Using our observability tooling + VPA to find
workloads requesting too much

Let’s look at those last 2 a little closer.

This is a contrived example.

If a cluster has nodes with 20 CPUs allocatable per node and
a workload with replicas that request 8 CPUs. This means at
most 2 replicas can fit on one node, leaving 4 CPU cores
unused but paid for. If the workload is scaled to 100 replicas
the cluster will provision 50 nodes and 200 CPU cores will be
wasted. If the requested CPU were to be increased to 10
CPUs per replica then 50 nodes would still be enough and
100% of the CPU resources would be used. But if the
requested CPU is then raised to 10.1 CPUs per replica, it
becomes impossible to deploy 2 replicas per node and 100
nodes will be provisioned where only 50.5% of the CPU are
allocated. That small change has a disproportionately large
impact on the waste of resources.

No autoscaler strategy or configuration can help with this.

Unallocated resources

This is how that looks when visualised using our profiling
tools. This is a real example and compared to the fabricated
one from earlier you can see it goes a little deeper - we also
add cluster, app/namespace/owner, and individual workloads.

Summing kube_unallocated - attributing it to a ‘virtual’
workload - across the whole fleet told us there was a real
opportunity here - it was one of our biggest ‘apps’ - visualising
this way help us figure out the best places to start.

Even with a more aggressive node autoscaler, we could see
we still had work to do, and reducing unallocated resource
was a real opportunity. How to start? First things first: are
workloads requesting the right amount of resources?

Second win: rightsizing resource requests. A great help with
this is the VPA - vertical pod autoscaler

https://github.com/kubernetes/autoscaler/tree/master/vertical-
pod-autoscaler

Ultimate goal: “frees users from the necessity of setting
up-to-date resource limits and requests for the containers in
their pods.” - this is a worthwhile problem. Resource requests
bitrot very quickly after an application is first deployed and
especially at somewhere like Shopify where we are
constantly deploying new revisions with new features and
behaviours.

Made up of several components which can be used
independently.

The updater and admission plugin components are ‘handle
with care’ tools.

Vertical Pod Autoscaler (VPA)

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

VPA recommender is a really good tool to help understand where
resources requests and limits should be set - these can become
very out of date over the lifecycle of an app. Bin packing well is
hindered if the workloads are poorly sized or rapidly changing. We
had actually already deployed the recommender to a lot of the fleet,
so we had data to interrogate

The recommender works by deploying a custom resource
targeting a real workload - typically a deployment - which tells
the recommender to start monitoring the resource usage of
its pods, and to make recommendations.. The resource is
updated with various values over time, we want to focus on
the target block - I could talk more about the other values but
this isn’t a VPA tutorial, and are mostly relevant if you’re
running with the other components - Target has the values
that the VPA recommends for this workload, based on current
and historical data

Status:
 Conditions:
 Last Transition Time: 2023-02-17T14:04:40Z
 Status: True
 Type: RecommendationProvided
 Recommendation:
 Container Recommendations:
 Container Name: web
 Lower Bound:
 Cpu: 100m
 Memory: 2538944114
 Target:
 Cpu: 100m
 Memory: 2975900105
 Uncapped Target:
 Cpu: 78m
 Memory: 2975900105
 Upper Bound:
 Cpu: 100m
 Memory: 3778022469

We built some extra tools to scrape this data into our
observability systems, so we can track them overtime and
overlay them with other data - like requests, limits, and actual
usage - or compare across different deployments (other
clusters or geographies). The `usage` metric here is a max
aggregation - we care about the peaks.

Anywhere you see a big gap between the current request and
recommendation levels is a good place to start. Note the
resolution of the recommender might be too low for bursty
workloads, so double check the recommendation against
actual usage as measured by something else.

We also have some tools to notify owners where there is a
big discrepancy/opportunity, and help people apply
recommendations to their workloads (e.g. automatically open
a pull request).

Going back to this view - pod sizing and node sizing have to
be considered together. The most perfect resource requests
for any particular workload might make it harder to effectively
pack nodes. Having more, smaller pods - or fewer, larger
ones - could give you bigger bang for buck. For your
environment standard pod sizes might be appropriate to
make this easier to reason about and tool for. Or, maybe you
already have similar or predictable pod sizes - low variance -
and you could change the shape of your nodes to better
accommodate them. This is local vs global maxima stuff.
YMMV, but remember that at the end of the day, your costs
are a function of the size and number of nodes - not the size
and number of pods.

Unallocated resources

• Using SSDs when not needed

• Buckets with inappropriate or missing lifecycle policies

• More expensive machine types

Cargo culting

Third win: cargo culting.

Copying and pasting terraform! These are some of the
inefficiencies we found.

Engineers at Shopify have lots of freedom by design, but in
this case it was starting to hurt us, so we needed some
guardrails - to give more context.

Discounts are a good example of context that very few
people have, but can really impact the bottom line.

We use Atlantis, a great tool to orchestrate terraform on
GitHub pull requests.

We have implemented some guardrails using conftest
integrated with atlantis, like this example. Anyone can dismiss
the policy checks - we always trust people to decide they
know better - but this allows us to give context about the
things we care about right in the critical path, not buried in a
doc, chat, or a person’s head.

We can also look at the policy violations after the fact, to see
if our policies - our expectations - are out of date.

Conftest

Chapter 3: Getting to good

Taking a step back from what we did, thinking about what
lessons we can draw.

We don’t want to slip back to bad - not only for the business
but also our teams, it was not a sustainable way to operate.
“Save X$ or Y%” style cuts over and over will eventually
cross resiliency or performance boundaries we don’t want to
cross, and we don’t wan’t to keep intruding on teams existing
roadmap.

This is the present and the work in progress for us, and is not
all figured out. Selfish interest in sharing - I would love to talk
to you if you have opinions on this!

So what might good look like?

Overall theme for this is no surprises - and in order to not be
surprised about something, you need to set some
expectations ahead of time.

✨ No surprises
✨

• Demand management

• Capacity planning

• Consumption insights

What good looks like

Demand management: Traffic forecasts, HPA/VPA/Cluster
autoscaler configuration, can we scale to our peak demand
requirements, scale tests

Capacity planning: resource forecasts, reservations,
committed use discounts

Consumption insights: Attribution, utilization, anomaly
detection

Just to talk about attribution a little more - I wanted to
emphasise this learning for us. We needed this to ensure we
could get the insights we needed

We could do subsets of this, but not all of it, and not all of it in
the same place. This hindered our ability to find the right
opportunities centrally.

You have to be able to
join workloads, owners,
utilization, and billing
data.

We were joining data across these 4 - and more - data
sources. Lowest common denominator becomes working by
hand in spreadsheets - fine for ad-hoc things but not very
scalable. It also had gaps.

Billing Inventory

Teams Services

Compute hours
Memory hours

GB hours

Nodes
Pods

Buckets

Contacts
Org/Group

Tier
Owner

Adding more of this data directly onto the resources as
metadata, e.g labels on Kubernetes resources and
namespaces, GCP instances, storage buckets

Especially helpful when the unit you want to group by is not
neatly contained in e.g. a single namespace, node pool,
cluster etc

Resources should describe at least - what their costs should
be attributed to, and who is responsible for maintaining them
(i.e. who you would ping on an action item/chat
message/issue tracker)

Also consider: compliance information (in scope for PCI?) or
jurisdiction (GDPR?)

Billing Inventory
Compute hours
Memory hours

GB hours

Nodes
Pods

Buckets
Tier

Cost Owner
Team

COGS/OPEX

• Greatly simplifies ability to report centrally

• No need to double key, or join different sources of truth

• Different implementations should use the same schema

Self-describing resources

Reducing the difficulty level in understanding our infra on
different dimensions.

So we can use the same keys in Kubernetes metadata -
resource labels - as that in other systems. This needs some
planning - constraints on character set and sizes/length can
vary between systems, so a lowest common denominator
needs to be found.

Foundation for different multi-tenant systems to attribute their
usage accurately and meaningfully.

• For example, infra costs to sustain 1M RPM

• Can we set expectations for this? SLI? SLO?

• Connecting cost with value

Unit costs

Cost in one side of the equation - a numerator without a
denominator. Unit costs can quantify what your organization
is buying in terms of the outputs of your applications - for
example, capacity to support 1M RPM.

Over a long time horizon you need to get better economies of
scale the more demand your infrastructure handles -
otherwise the business will eventually fail - unit costs can
help show that.

Connect cost with value - this is where I want to end

Value is where I want to end this talk, and where I think we
should start.

Saving money is easy - turn it all off, delete all the data; there
I fixed it - but that’s not going to be a positive outcome for
your business.

This doesn’t exist in a vacuum.

Pick the low hanging fruit, given enough time passing you will
always find some - back to the saw tooth. Then sure, look to
optimise, but understand the trade offs. Chesterton’s Fence!

Lowering costs is not
the goal.

This isn’t quite precise enough either, if any of you can
articulate this better I would love to hear about it!

Cost is one part of a nuanced equation to determine value.
What are we buying with our spend, is that valuable to our
business objectives - answering this is not simple arithmetic,
and requires input from customers and stakeholders.

What is 100ms of p99 latency worth? 30 minutes of recovery
time objective (RTO)? 12 months of retention? “What
business objective does this support”, “what value does this
drive” are key to the value judgement. Like good SLOs -
connecting what we’re doing to the value we are trying to
deliver to our users and customers.

So that’s what good might look like: no surprises, and trying
to connect as much of the spend as possible to the value it
delivers.

Maximising value is
closer…

I’m lucky enough to work with some very clever people at
Shopify, I am here today representing their efforts so thanks
to them, and thank you all for coming today.

Thanks!

