
The making of an
Ultra Low Latency Trading System 
With Java and Golang

Yucong Sun
Staff Software Engineer

Jonathan Ting
Senior Software Engineer



Exchange @ Coinbase
● Takeaways

○ General architecture of an Exchange
○ State of the Art
○ Learnings from optimizing the legacy system



Planetary view of an Exchange
Most users would/should not interact with an Exchange directly

Brokerage
Product

Market Makers /
 Trading Firm

User

Exchange

API

Market Data



Orbital view of an Exchange
Order Management System: 

 Balance, Risk, Margin/Liquidations
Matching Engine: Order book

API: FIX, HTTP
MarketData: FIX, Websocket

Hot path: Balance check, Order Matching
Warm path: Settlement
Auxiliary:  Market Data Feed

Matching 
Engine

OMS

Market Data

API



Assembly Lines of a Exchange

Order Order Order Trading 
System 

Process 1 Trade Event Trade Event Trade Event

Order Order Order Trading 
System 

Process 2

Trade Event Trade Event Trade Event



Exhibit A:
Coinbase Derivatives Exchange
https://www.coinbase.com/derivatives

https://www.coinbase.com/derivatives


Trading System Logic Isn’t Complex
Hot Path

Submit & match incoming orders against resting orders (‘book’)

Public - no complex trading relationships

Other logic (timers, admin requests, state)

Affect trading logic, so want to be sequenced with any other events
         
Trading system assigns IDs to state

Single threaded



Trading
System

T=100

Trading System as Deterministic State Machine

State₀ + Input₀ => State₁ + Output₁ ALWAYS

Can snapshot/restore/replay to get to live state

Old Input 
T=50..100

Equivalent

Determinism is Tricky!

- Data Structure Iteration
- No randomness
- Behavior changes

- Old input => Old behavior
- Feature flagging Old Snapshot

T=50
+



Fault Tolerance with RAFT

Trading
System

(Follower)
(Leader)

Trading
System
(Leader)

Trading
System

(Follower)X

Aeron Cluster
High performance RAFT implementation

App has to be deterministic & single threaded

Consensus batched & pipelined with application

System throughput = 1 / App processing time

What is RAFT? Visualize it here

https://aeron.io/
https://thesecretlivesofdata.com/raft/


Persisted RAFT Log

Cluster persists RAFT log (input) to disk, as per protocol

Aeron Archive API allows for replicating the RAFT log for backup

Trading
System

Cluster 
BackupReplicate

RAFT Log

UDP

https://github.com/real-logic/aeron/wiki/Aeron-Archive


Audit - Upload to cold storage

Logging - Replay & Send to ELK outside hot path

Debugging - Reproduce bugs locally

Fixing - Backfill missing events

Testing - CI/CD replay to avoid regressions

Replicated RAFT Log



Replicating For Replay

Replicate Input, not Output

Hot Path - Multicast output

Other - Replicate input & fan out

Output larger & unbounded

1 order => potentially cascading set of events

Trading
System

Local
Trading
System

Service

Aeron
Archive

(1)
Replicate
RAFT Log

(2)
Replay

RAFT Log

(4)
Record

Trading Events

(4)
Replay

Trading Events
IPC

(3) 
Run Trading Logic

UDP

IPC



Replicating For Scalability

Binary tree replication

Network Latency bound by log(n)

Bandwidth usage bounded



Trading
System

Order
Gateway

Entire Hot Path

RTT outliers < 100 μs

RTT medians < 50 μs

Trading System Processing Times ~ 1 μs

300k/s Peak Throughput

1) Parse & validate Order Submit
2) Send request to trading system
3) RAFT Consensus
4) Matching Algorithm
5) Send order events to gateway
6) Translate Order Ack

= 4 Network Hops (~20μs) + Processing

UDPOrder Submit

Order Ack



Hardware Environment for CDE
Colocated in datacenter with customers

Commodity hardware

❖ Intel Optane Drives
Faster than enterprise SSDs
We can fsync if needed without too much penalty

❖ Low Latency Switches 
350ns cut-through forwarding
Real-time packet capture without latency hit 

Isolated NICs for low latency & bulk traffic



Exhibit B:
Onto the (AWS) Cloud



Cloud
Cons
- Less control over hardware environment
- Need to maintain both DC/AWS deployment, toolchain, configs…

Pros
- Codification, Collaboration
- Good enough performance
- Personal environment



Challenge with Compute/Storage
 Machine family:  t, m, c, r, z , suffixes N, D

- Recommend: https://instances.vantage.sh/
 

Storage
- EBS vs Instance Storage

Orchestration
- Recommendation: Nomad

https://instances.vantage.sh/


Challenge with AWS networking
Is there a good switch on AWS?
- Cut-through: <0.5us
- Store & forward: 5us - 50us



● Understand spine-leaf networking architecture 
○ Region, AZ, sub-azs, racks
○ Avoid load balancers

● cluster placement group 
○ capacity reservations

● bad apples

https://www.xkyle.com/Measuring-AWS-Region-and-AZ-Latency/

Secrets with AWS Networks

https://www.xkyle.com/Measuring-AWS-Region-and-AZ-Latency/


Numbers On AWS

10 x Network Hops (~250μs)

RTT outliers < 1 ms

RTT medians < 300 μs

Trading System Processing ~ 1 μs



Exhibit C:
Deep Dive on Performance Tuning



Memory Local Data Structures
Cache locality outweighs O(n)

Primitive Friendly Data Structures
No Map<Integer>, avoid Boxing/Unboxing

Deserialize from memory directly into primitives

Represent Strings as 2 Longs
128 bits => 18 7-bit (ascii) | 21 6-bit (alphanumeric) | 25 5-bit (alphabetic) | 32 4-bit (hex) 

No Allocation on Hot Path
Object Pooling

Fast Memory Access



Small Messages

Simple Binary Encoding

Byte Alignment Matters
FPGA Deserialization

Order Fields By Size

VarData / Enum / Bitsets at End

Add Padding If Necessary

<types>
    <enum name="Side" encodingType="uint8">
        <validValue name="BUY">0</validValue>
        <validValue name="SELL">1</validValue>
    </enum>

    <type name="ClientOrderId" primitiveType="char" length="32">
</types>

<sbe:message name="Order" id="1">
    <field name="orderId" id="1" type="int64"/>
    <field name="price" id="2" type="int64"/>
    <field name="quantity" id="3" type="int32"/>
    <field name=”side” id=4” type=”Side”/>
    <field name=”clientOrderId” id=”5” type=”ClientOrderId”/>
</sbe:message>

https://github.com/real-logic/simple-binary-encoding


Java Challenges - Warmup

10k function invocations => JIT compilation
Regulated Exchange - Cannot “warm up” our code

Azul Zulu Prime JVM - ReadyNow!
Cache and Persist JIT Profile + Optimizations

Pre-train new releases with multiple replays of PROD logs

Fast initial orders, remove JIT compilation jitter

https://www.azul.com/products/components/readynow/


Java Challenges - Garbage Collection

“Stop The World” GC - All Application Threads Stalled
Java 8 - Concurrent Mark Sweep

Azul Zulu Prime JVM - Pauseless Garbage Collector
Azul C4 Garbage Collector

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html
https://www.azul.com/products/components/pgc/


Network Optimizations
Multicast

Consensus
Output to order and market data gateways

Aeron - High Performance Messaging
Reliable Transport over UDP
Per-channel settings

Congestion & Flow Control
Socket Buffers - # data in flight ideally equal to Bandwidth Delay Product
MTU - Jumbo Frames (9k) for batching



Network Optimizations

Kernel Bypass
Read from network card directly from user space
Decreases median, drastically reduces outliers
OpenOnload in data center w/ SolarFlare NICs
DPDK in the cloud - Aeron Support (premium)

NIC Driver Softirq Application

NIC Application

NIC Driver Qdisc Application

Linux Kernel Bypass

Mean Max Throughput

non-DPDK 38μs 1897μs 80MB/s

DPDK 28us 515μs 500MB/s

Aeron point-to-point
Sending as fast as possible on AWS

https://aeron.io/wp-content/uploads/2023/03/Aeron-KernelBypass-Final-Mar23-1.pdf


Medians Good, Outliers Spiky

Weeks Before Launch



OS Scheduling Delay / Context Switches
How are CPU cycles are not running your hot threads?

/proc/sched_debug - task running time per CPU

/proc/<tid>/schedstat

    time on cpu          time on runqueue    # time slices
4200925624037      12872240906155      780539850
4200966662712      12872278642290      780547937
4201007606214      12872323980891      780556132
4201046361274      12872441023508      780564249

/proc/interrupts - per CPU hardware interrupt #

/proc/softirqs - per CPU hardware interrupt #
perf - get thread runtime or counts individually on a given CPU
# perf record -e "sched:sched_stat_runtime" -C <core id>
# perf script | awk '{print $1 }' | sort | uniq -c
     15 kworker/3:1H-kb
      1 kworker/3:2-cgr
      3 perf
      1 rcu_sched
  12356 sender



Recommendation: Netdata

a nice visual holistic view of the system

per-cpu interrupts/softirqs/utilization

network, memory, disk, filesystem



OS Scheduling
Pin hot threads to hardcoded CPUs (taskset, sched_setaffinity)

Prevents context switching & cache misses

Isolate hot CPUs or prioritize threads (ISOLCPUS, taskset, cpusets, nice, chrt)
Prevent other user threads from taking CPU time

    Busy-spin hot threads to monopolize CPU (and for polling)

Set affinities to hardware interrupts, kernel workqueues, etc.
Hardware interrupts - use tuna, or set /proc/irq/<irq#>/smp_affinity
Softirq kernel params - rcu_nocbs, nohz_full



Other Tuning

NUMA locality
If you have multiple CPU sockets, one is closer to NIC and memory
Layout matters - lock hot threads to that CPU / Memory NUMA node

Hyperthreading
Turn it off (or isolate corresponding logical CPU)
More available L1/L2 cache without it



Exhibit D:
Apply the learnings to improve
The Legacy System
Where the real fun begins…



API-FIX OEGW DB

Trading 
Engine

Feed 
Proxy

Fun with MicroServices

Clearing API-FEED Rest
Gateway API2

API Jobs GoJobs

Admin

Clearing-
Core

Solution: Another dashboard???



Life of an request

Client FIX OEGW
DB

Trading 
Engine

Feed 
Proxy

1 2
3

4 5

6

Tracing an single order placement request from start to finish



Client FIX OEGW
DB

Trading 
Engine

Feed 
Proxy

1 2
3

4 5

6

FIX to OEGW RPC (2)

OEGW RPC Handler

DB Hold (3)

Conn

TE RPC (4) client

Wait for feed msgWait for prev order 
finish

E2E Order placement latency

TE RPC Handler

Receive from 
FP (6)

Raft Repl FSM Send to FP
(5)

FP Receive

N N

SQL 
(client)

SQL 
(serv
er)

FIX queue broadcaster

Graph 
Everything !!!

Beware:
- Client side view vs Server 

Side view
- E2E view vs per-unit view
- Tracing sampling



Happy Path: min/p50

Infra Inefficiencies - 1000us -> 600us
                                                          vs 50us
- Compute/Storage
- Network latency

- Cross AZ traffic
- Load balancer

- fsync()s

Per operation cost - 30us vs 1us
- Full native, no warmup issue
- Allocations, Pointers
- Metrics recording / Logging

~1200us: Elevated but not that outrageous

Do you know how often your datadog metrics call is sending a UDP packet out?



Is it just misplaced fsync()s?

FIX Receive Order 
Process FIX SendBalance 

CheckRAFT

FIX Receive Order 
Process FIX SendRAFTBalance 

Check

DB

FAST

SLOW

Non batched fsync() here

Batched fsync on Optane
or no fsync() here

fsync() cost ~500us to 1ms on AWS hardware



Pointer & Memory Allocations In Golang
Heap escape analysis (-gcflags “-m”)

- Sending pointers or values containing pointers to channels. 

- Storing pointers or values containing pointers in a slice. like []*string. 

- Backing arrays of slices that get reallocated because an append would exceed their 

capacity. 

- Calling methods on an interface type

Pass a small struct by value could be 8x faster vs passing by pointer, thus moving it to the 

heap. (x86_64 has cache line size 64 bytes)

https://segment.com/blog/allocation-efficiency-in-high-performance-go-services/

https://segment.com/blog/allocation-efficiency-in-high-performance-go-services/


- GC pause?
- Scheduling delays?
- Non-FIFO behaviors?

Unhappy Path: p99/max
P99 ~4ms, Max 362ms
WTF is going on…



Is Golang GC really a issue?

https://go.dev/blog/ismmkeynote

https://tip.golang.org/doc/gc-guide

https://malloc.se/blog/zgc-jdk16

https://www.azul.com/sites/default/fi
les/images/c4_paper_acm.pdf

https://go.dev/blog/ismmkeynote
https://tip.golang.org/doc/gc-guide
https://www.azul.com/sites/default/files/images/c4_paper_acm.pdf
https://www.azul.com/sites/default/files/images/c4_paper_acm.pdf


Hint: Goroutine explosion by GRPC
Golang grpc unary requests default to create new goroutine for every request, this cause starvation of 
any background goroutines, leads to tail latencies

34041 
goroutines???



Hint: Goroutine scheduler delay



Goroutine is not your good old thread

- Go scheduler

- GOMAXPROCS = 
num CPUs

- Remember: Only 
GOMAXPROCS will 
run at same time

https://assets.ctfassets.net/oxjq45e8ilak/48lwQdnyDJr2O64KUsUB5V/5d8343da0119045c4b26eb65a83e786f/100545_516729073_DMITRII_VIUKOV_Go_scheduler_Implementing_language_with_lightweight_concurrency.pdf


Visualizing how API-FIX works

Client
Session1

Session2
Client

S1 BTC-USD

S1 ETH-USD

…

…

…

…

GRPC.
Invoke TCP 

Connection

REMEMBER: Only GOMAXPROCS amount of goroutines will run at any given time

Network 
Poller

Go Routine

Contended 
Resource

Shuffled



Visualizing how OEGW works

FIX

FIX

TCP 
Connection

1 RPC = 1 
goroutine

GRPC.
Invoke

Goroutine

Contended 
Resource

TCP 
Connection

Conn
Pool

DB

DB

TCP 
Connection

Random: Not FIFO
https://github.com/golang/go/issues/31708

Shuffled

https://github.com/golang/go/issues/31708


TCP 
Connection

inputCh raftChan ApplyCh OutCh

Visualizing how Trading Engine works

Network 
PollerRAFT

TCP 
Connection

REMEMBER: Only GOMAXPROCS amount of goroutines will run at any given time



Mitigations: spinning important goroutine

select {
case item <- ch:

// process item
}

Note: Golang scheduler will force preempt 
long running go-routines every 10ms

Challenges:
Can’t spin too much, as you will run out of 
CPU and cause starvation.
runtime.LockOSThread()

select {
case item <- ch:

// process item
default:

// busy spinning
continue

}



Mitigations: Always batch when using channels
select {
case item <- bufCh:

items := make([]int, 20)
items = append(items, item)

Remaining:
for i := 0; i < 19; i++ {

select {
case item <- bufCh:

items = append(items, item)
default:

break Remaining
}

}
// processing items

    default: continue
}

First Read

Grab outstanding 
messages while you 
are there 

Why does this work?
- Avoid scheduler delays
- Better cache locality

Don’t forget spinning!



Realization: Golang is optimized for throughput
Most facilities in Golang Linux introduce an randomness element to optimize for 
throughput, not latency

- Go encourage you/libraries to spawn adhoc goroutines everywhere
- No goroutine priorities,  and scheduler is randomized and job stealing

Writing low latency code in Golang is not easy, but again it’s not easy anywhere 
else either.

Recommendation: use GRPC in streaming mode, not unary mode!



Is it just misplaced fsync()s?

FIX Receive Order 
Process FIX SendBalance 

CheckRAFT

FIX Receive Order 
Process FIX SendRAFTBalance 

Check

DB

FAST

SLOW

Non batched fsync() here

Batched fsync on Optane,
or no fsync() here

fsync() cost ~500us to 1ms on AWS hardware



…“let’s add this part or the 
process step in case we need 
it”… the most common error of a 
smart engineer,  is to optimize 
the thing that should not exist….
Elon Musk on Engineering, interviewed by Tim Dodd

[0] https://bristot.me/files/research/papers/ecrts2020/slides.pdf

Latency Cost Rankings
<1us Kernel syscall overhead
~ 1us optimized application logic cost
~ 5us kernel context switching cost
~ 5us per network hop on LT hardware
~ 25us per network hop on AWS hardware
~ 30us per message unoptimized application 
logic cost
~ 50us - 100us RT Kernel scheduler delay [0]
~ <100us fsync on Optane
~ 250us golang GC pauses
~ 1ms fsync on AWS Instance Storage
~ N ms non-RT Kernel scheduler delay [0]
~N to NNms golang scheduler delays

https://bristot.me/files/research/papers/ecrts2020/slides.pdf

