
Turning an incident report
into a design issue with

TLA+
Finn Hackett (UBC) & Markus A. Kuppe (MSFT)

1

By Some Not-SREs

2

A. Finn Hackett
PhD Student at U. of British Columbia

Programming Languages Researcher
→Intern at Microsoft Research S‘22

Markus A. Kuppe
Principal Research Engineer (MSFT)

TLA+ eng, Postmortem Reviewer
→Finn’s internship mentor S’22

Joshua Rowe
Principal Engineer (MSFT)

Azure CosmosDB
→Domain expert

Thanks to postmortem owner Ben Pannell (MSFT)!

Highlights

3

📉 We learned about a high-profile 28-day incident at Microsoft Azure.

😕 Mitigation was a feature revert (full repair a costly multi-year redesign).

🤔 Reproducing the issue at small scale is impractical…

💡 Idea: use modeling to unambiguously document the problem.

We use TLA+ here, but this applies to similar tools as well.

A Workflow Beyond Incident Reports

4

Incident Incident
report

System(s)
Model

Specification of
correct behavior

✍ Checker

Counter-examples

💡… which summarize the
issue at a high level.

⚙

Conventional outcomes

Story Time: an Incident

5

2b. Uncommon Client
Request Pattern Starts
to Fail Very Often

3. Lots of Debugging
Later, Client Considers
Azure Might be Wrong

5. System Running
Too Fast, Roll back!

4. Azure Devs
Investigate

1. A Performance
Optimization is Deployed

2a. Error Metrics Don’t
Noticeably Change…

6s/${real product name}/FROBLE

What’s the Big Deal?

7

Client is not seeing errors anymore, but…

😕 That took a long time to figure out.
(28 days to fix)

😕 We know why we rolled back, but design-level insight is missing.

🤔 What about the design made a component being too fast a problem?

We want to clearly model and understand what happened at the conceptual level.

Step 1:
Understand
Underlying
System(s)

8

What is Azure CosmosDB?

⚙ Need to understand what the system is supposed to do to model it.

What we present next is based on what we learned by drafting our model.

🌎 A planet-scale key-value store - a big distributed system.

🗃 Stores your data as key-value mappings, useful for app/service data.

🤔 Similar to? Amazon DynamoDB, Google Firestore…

9

Also using TLA+

Key Detail: Communication with Azure Cosmos DB

10

CosmosDB

4. Job
failed…
💀 CosmosDB

3. DB replies metadata not found ❌
(but only when 2. is “too fast”)

1. Write
metadata 🖊
successfully

Work
Dispatcher

Worker

2. Enqueue work ➡

CosmosDB: Consensus Machine

📩 Clients exchange get/set messages with different servers.

👉 Need consensus to make sense of this.

11

CosmosDB

��
��

🖳
����

��
��
�� ��

��
Client B

Client A Client C

CosmosDB: Consistency Levels

🛠 5 consistency levels control how strictly CosmosDB maintains consensus.

12

Consistency Level Effect on Client View

Strong Consistency Global order; clients always see latest versions

Bounded Staleness Old values visible for limited (bounded) time

Session Consistency Synchronize only between clients with shared token

Consistent Prefix Generally similar to Eventual Consistency

Eventual Consistency Old values should eventually stop showing up

Strict +
inefficient

Fast +
unreliable

Recommended
in docs
(but tricky)

Step 2:
Represent
Underlying
System(s)

13

CosmosDB: What to Model for Our Purpose?

14

No Yes

❌ Detailed client API syntax ✔ Plain key-value r/w

❌ Server management ✔ Client view of servers

❌ Anything client can’t see ✔ Anything client can see
(especially unusual things)

"The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise."
– Edsger W. Dijkstra

… But Have a Domain Expert Model It

15

CosmosDB

CosmosDB: the TLA+ Model

5✔ Simulate concurrent key-value reads and writes at all 5 consistency lvls.

⌛ Reusable, complete model: took 3 months to build w/ dev input.

🌟 But it took 1 day to use in this postmortem.

Github: https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model

16

See our conference paper for all the details:
https://doi.org/10.48550/arXiv.2210.13661 (preprint)

https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model
https://doi.org/10.48550/arXiv.2210.13661

Step 3: Model
the Incident
Demo Time!

17

Thinking in States: Branching Possibilities

18

1. Write value to CosmosDB 2a. Value does not get
replicated enough 3a. Key not found; bad

2b. Value is fully replicated 3b. Key found; ok actually

2c. Node failure; value lost 3c. Key not found; also bad

TLA+ lets us consider
all these possibilities
at the same time.

��

Thinking in States: the Full 🍝

19

(... with failure
sim disabled,
vars skipped)

The Corrected Design

20

CosmosDB

🖳
Work

Dispatcher

🖳
Worker

1. Write
metadata 🖊
successfully

3. Read with token OK ✨

4. No problem 🎉

2. Enqueue work ➡
with attached token

What We Learned

21

💡 Problem is using session consistency without sharing tokens.

📝 Original mitigation changed the probability of the issue, but wasn’t a fix.
The issue was always there, just very rare.

📝 Clear when presented this way, but issue was hidden behind APIs.

📝 Engineers were not surprised by our results - we confirmed what was
was suspected but could not be demonstrated.

📝 Modeling helped us think and investigate.

Summary

Reproduced incident spanning multiple foundational systems. 🎉

Our modeling workflow can go beyond current incident reports.

You can do this too. Learn at http://tlapl.us.

TLA+ model (linked from official docs):
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels.

Paper: https://doi.org/10.48550/arXiv.2210.13661.

22

http://tlapl.us
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://doi.org/10.48550/arXiv.2210.13661

Any Questions?

23

Incident Incident
report

System(s)
Model

Specification of
correct behavior

✍ Checker

Counter-examples

��

⚙

Conventional outcomes

