ATdaptive Concurrency Control
for Mixed Analytical Workloads

Dan Kleiman
March, 2023

At Klaviyo, we do targeted messaging, data integrations, and analytics

2
I[C
Y
1%

Analytics via APIls, Dashboards, and Reports

2 & F

Which email domains Who are my most How much revenue
have the best open engaged customers? did my last campaign
rates? generate?

Fast, Flexible
Query Services

APls > < Uls

e Custom Reports ==——p 4—|nternal Services =—

Mixed workloads running on the same “shared calculator”

Metric Service: App Side Latency (Execution Only) / p95

1255 ¥ 3000
- api 101s 248ms
= offline 1.08s 234ms
- service 105s 153ms

= staff_ui 262ms 14.6ms
ul 731ms 179ms

unknown 0Oms 0ms

Healthy request processing for thousands of requests per second

© Metric Service: App Side Latency (Execution Only) / p95

125s . aveo
- offline 10.0s B01ms
gl " 7.01s 234s
- Service 7.00s 200s
7.50
= . = staffui 7.00s 742ms
) = api 680s 706ms
S5s 5
| unknown 0ms Oms
1
250s M \
|

08:30 08:40 08:50

Unhealthy request processing - waves of congestion

Total
aug == api.deadline_exceeded 6.32K
ill — 1'\ == service.deadline_exceeded 474K
400 'w‘ == ui.deadline_exceeded 591
l“ == offline.deadline_exceeded 59
300 ’\‘. '| == staff_ui.deadline_exceeded 3
" ".‘ ‘. api.internal 3
200 f \ t AN\ == api.cancelled 0
[\ | " = service.cancelled 0
100 ! " ! I“"' Y unknown.deadline_exceeded 0
== offline.internal 0
0 . — . — . service.internal 0
08:30 08:35 08:40 0845 08:50 0855 0900 0905 0910 0915 09:20 09:25

“My workload hasn’t changed. Why are my requests suddenly timing out?”

Better way to keep our service healthy for all our users?

o
COMCAST

Stop Rate Limiting! (requests)

Capacity Management,Done Right
for APLy

Jon Moore

Chief Software Architect & Senior Fellow
Comcast Cable
strange {2 @jon_moore

Sept 28-30,2017
thestrangeloop.com

Netflix Technology Blog Y O M &
g ¢
Mar 23,2018 - Sminread - @ Listen

Performance Under Load

P Pl) 012/4279 - introduction >

"Stop Rate Limiting! Capacity Management Done Right" by Jon Moore

Adaptive Concurrency Limits @ Netflix

by Eran Landau, William Thurston, Tim Bozarth

Metrics Service
Request Flow

Metrics Service Request Flow

Metrics Service Query Request

Client

Envoy Proxy
x4

)

Processed Results

Request Routing

;Pmcessed Results

Metrics Service
Server Pod
X 24

Clickhouse Node

Query Results

Metrics Service Request Flow - gRPC Server

Metrics Service
Client

| —

Thread Pool Executor

Metrics Service gRPC Server

Request on Thread A s———
Request A

Request B

L Request on Thread B e——p

Request C =

Request on Thread C s

Processed Results Aﬁ

Processed Results B

\———Processed Results C

Shared Connection
Pool

Shared CPU for
Results Processing

(Clickhouse Node

Query A L

Query B =———————p

| =

Clickhouse Node

Query C

e Query Results C

Query R

Query Re:

esults A

ults B

J

Request Queuing and
Concurrency

Healthy State - Queuing Balanced with Processing

Request Queue

Request Request Request Request

4 requests in the queue, Processed Requests
4 second deadline each,

processing 1 request per second,

no timeouts

Metrics Service

Request

Unhealthy State - Queue Depth Exceeds Processing Rate

Request Queue

eeeeeee

8 requests in the queue,

4 second deadline each,
processing 1 request per second,
last 4 requests to arrive time out

eeeeeee

Metrics Service

Unhealthy State - Processing Rate Slows Down

Request Queue

4 requests in the queue, Processed Requests
4 second deadline each,
2 seconds to process a request,

Metrics Service

last 2 requests to arrive time out

Concurrency is nothing more than the number of requests a system can
service at any given time and is normally driven by a fixed resource such
as CPU.

A system’s concurrency is normally calculated using Little’s law, which
states: For a system at steady state, concurrency is the product of the
average service time and the average service rate (L = AW). Any requests
in excess of this concurrency cannot immediately be serviced and must
be queued or rejected. With that said some queueing is necessary as it
enables full system utilization in spite of non-uniform request arrival and
service time.

Systems fail when no limit is enforced on this queue, such as during
prolonged periods of time where the arrival rate exceeds the exit rate. As
the queue grows so will latency until all requests start timing out and the
system will ultimately run out of memory and crash. If left unchecked
latency increases start adversely affecting its callers leading to
cascading failures through the system.

from Netflix’s Performance Under Load

https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581

Accept or Reject
the Next Request?

Accept or Reject Before Queuing - Load Shedding

New Request

Request Queue

Accept or Reject? =—————p

3 requests in the queue,

4 second deadline each,
processing 1 request per second,
accept or reject next request?

Metrics Service

Accept or Reject Before Queuing - Load Shedding

New Request

Request Queue

Accept or Reject? ———p

4 requests in the queue,

4 second deadline each,
processing 1 request per second,
accept or reject next request?

Processed Requests

Metrics Service

Load Shedding at the Cluster Level

Server 1

Request Queue

— Metrics Service
Request Request Request Request
—
Processed Requests
Retryable Request
First Req
Request
R ted—
Server 2
Request Queue
Second Request: Metrics Service

Request Request Reauest

Processed Requests

Successfully Proc

Request

Load Shedding and Concurrency Control

1. How many requests are we already
processing - inflight requests?

2. What our maximum number of requests we
can process at once - concurrency limit?

3. If inflight request count < concurrency limit,
accept the new request.

4. Otherwise, reject it.

Adaptive
Concurrency Control

Adaptive Concurrency Control - Measuring Latency

Metrics Service
Client

—)

Thread Pool Executor

Metrics Service gRPC Server

Request on Thread A s———
Request A

Request B

L Request on Thread B e——p

Request C =y

Request on Thread C s

Processed Results Aﬁ

Processed Results B

\———Processed Results C

Shared Connection
Pool

Shared CPU for
Results Processing

(Clickhouse Node

Query A

Query B =———————p

Clickhouse Node

Query C

e QUETY ReSULtS C

Query R

Query Re:

esults A

ults B

J

Adaptive Concurrency Control - Record, Recalculate, React

Recalculate Global Apply Limit Algorithm

Apply Partition Limits

Concurrenc y Limit

— Accept —p Normal Processing — Record Sample

1. Record latency (RTT) of each
request

2. Calculate aggregate latency over a
period of time

3. Adjust concurrency limits based
on the aggregate latency value

Metrics Service
Client

Adaptive Concurrency Control - AIMD Algorithm

Additive Increase

When we are within our latency tolerance, we can
Increase the concurrency limit by 1.

Multiplicative Decrease
When we cross the latency threshold, we

decrease the concurrency limit by a backoff
multiplier.

def _update(
self,
start_time: float,
rtt: float,
inflight: int,
timeout_observed: bool

if timeout_observed or rtt > self._ latency_ threshold ms:
self. current_limit = math.floor(
self._current_limit * self._backoff_ratio

elif inflight * 2 >= self._current_limit:
self. current_limit += 1

self. current_limit = min(
self. max_limit, max(self. min_limit, self._current_limit)

Python implementation of Netflix’s java version

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java

def _update(
self,
start_time: float,
rtt: float,
inflight: int, L
timeout_observed: bool Backoff Condition

if timeout_observed or rtt > self._ latency_ threshold ms:
self. current_limit = math.floor(
self._current_limit * self._backoff_ratio

elif inflight * 2 >= self._current_limit:
self._current_limit += 1

self. current_limit = min(
self. max_limit, max(self. min_limit, self._current_limit)

Python implementation of Netflix’s java version

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java

def _update(
self,
start_time: float,
rtt: float,
inflight: int,
timeout_observed: bool

if timeout_observed or

self._current_limit POsSsible Increase Condition

self. current 1

elif inflight * 2 >= self._current_limit:
self._current_limit += 1

self. current_limit = min(
self. max_limit, max(self. min_limit, self._current_limit)

Python implementation of Netflix’s java version

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java

“My workload hasn’t
changed...”

Adaptive Concurrency Control - Partition Limits

Recalculate Global

Apply Partition Limits Apply Limit Algorithm

Concurrenc! y Limit

— Accept —p Normal Processing — Record Sample

After we derive a new Global Limit, we
calculate Partition Limits as percentages of
the Global limit.

Metrics Service
Client

—_— Request Reject

Any caller can be mapped to a Partition.

Partition Limits guarantee throughput
allocations on a per caller basis.

Going Live...

Aggregated RTT

11:18:30 11:19:00 11:19:30 11:20:00 11:20:30 11:21:00 11:21:30 11:22:00 11:22:30 11:23:00 11:23:30 11:24:00 11:24:30

- f;

RTT increasing from 100ms to 400ms is a signal that we’re slowing down.
Need to accept fewer new requests.

Global Concurrency Limit by Pod

Reducing the limit in response to increased latency allows the system to recover gracefully.

Aggregated RTT

11:18:30 11:19:00 11:19:30 11:20:00 11:20:30 11:21:00 11:21:30 11:22:00 11:22:30 11:23:00 11:23:30 11:24:00 11:24:30

Changes in RTT per server pod vary based on the query mix,
so latency can vary considerably across the cluster.

Metric Service: App Side Latency (Execution Only) / p95

5s

max v avg
\l\ - Ui 464s 269ms
|
4s == api 287s 349ms
== offline 272s 233ms
3s == service 944ms 189 ms
== staff_ui 72.7ms 12.0ms
2
S == unknown 0ms 0ms
1s
0ms

10:10 10:12 10:14 10:16 10:18 10:20 10:22

When things did get bad? No more congestion, just spikes.

Thank you! Any Questions?

(=] a[m]
Blog post at klaviyo.tech % Ask me more @Dan_Kleiman
[=]

