Not all minutes are equal

The secret behind SLO adoption failure

Troy Koss + Michael Goins March 2023

```
Who are we?
```

Michael Goins - A problem solver.

Example: My Hands hurt => Used vim => Problem solved.

Troy Koss - A problem creator.

Example: Had a simple service => Used Kubernetes => Problem created.

Just because it's published doesn't mean it's right Metrics don't self Justify SLOs are Awesome Used an SLO I saw it in a conference / Set up SLO on a system with much fanfare book / article **Circular Sales** Strategy The results are Awesome Because.... SLOs verify that SLOs are great

An actual strategy

Easy

Study Industry Publications

Scale Fanfare & Action Understand the Signals Fix what went wrong (if possible) Experiment with the metric Study Industry Publications

SLOs in Marketing

(Reenactment)

SLOs in Marketing

https://webhome.phy.duke.edu/~rqb/Class/intro math review/intro math review/node21.html

SREs = Crazy

Stuffing Events in to Time (Time Slicing)

99.95 SLO for Availability (non 5XXs) at application

Problem

Created!

Experiment with the metric

Experiment

Question:

Is Error Budget actually in "Events" or are "Events" really in time?

Assertion:

SLOs should correlate with what is known currently about system health

Currently Known To Be True (always most of the time):

- Incidents
- Changes
- Personal Impressions

Event Ratio (500s & non-500s)

Time Slice: "L Graph"

99.95 SLO with 95% "Threshold" for good/bad minute

**(1 - Threshold): % of Bad Traffic to ignore each minute (doesn't hit EB)

Fix what went wrong (if possible)

Formulaic SLO definition

Service Level Indicator (SLI)

Service Level Objective (SLO)

Definition:

Ratio of Good over Total through a period of time measured through observability tools

Formula:

SLI = Good / Total * 100

Example:

Good: 99,990 requests in 30 days **Total:** 100,000 requests in 30 days 99.99% = 99,990 / 100,000 * 100

Definition:

Expected system reliability from a resourcing perspective

Formula:

0% < Objective < 100%

Example:

Objective = 99.5%

Error Budget (EB)

Definition:

The amount of permissible impact on users

Formulas:

Error Budget = (1 - Objective) * Total

% EB Remaining = ((EB - Bad) / EB) * 100

Examples:

500 Allowed Errors= (1 - .995) * 100,000

98% EBR = ((500 - 10 Bad) / 500) * 100

Event Based: "Money Chart 💰 💸 🤑 "

99.95 SLO

Problem

Solved!

Coding mistakes: "Testing matters"

 30 Day SLO Value ①
 SLO Target ①
 Error Budget Remaining ①
 Error Budget Burn Rate ①

 99.82%
 93%
 49h 10m
 0%

30 day SLI

Another

Problem

Created!

Understand the Signals

Scale

Fanfare & Action

Understand the Signals

Fix what went wrong (if possible)

Experiment with the metric

Study Industry Publications

Signals: Interpretation

99.95 SLO

Signals: "Feel the Bern"

Time

Great the data is believable, now what?

Error Budget Signals

• Movement:

- Slow Burns
- Fast Burns
- Recoveries
- Associations:
 - Changes
 - Incidents (including missing incidents)
 - Bug
 - Alerts
- Action:
 - o 5 Ws, & H

Remember Michael's Sheep "MAA".....

Fanfare & Action

Understand the Signals

Fix what went wrong (if possible)

Experiment with the metric

Study Industry Publications

Bootstrapping Teams w/Defaults

You get a SLO! And You get a SLO!

What should my objective be?

98.5?

99.5?

99.9?

99.99999?

64.5?

Another, Another

Problem

Created!

Default SLOs

That's cool, what do we do with it?

Error Budget Policy

- Who does what, when?
- Accountability
- Reinforcement
 - Team member changes
 - Re-org
- Enhancements to the SLO
 - Changes to SLI
 - Changes to Objective

Scale

ScaleFanfare & ActionUnderstand the SignalsFix what went wrong (if possible)Experiment with the metricStudy Industry Publications

Easy as 1, 2, 3... 4 - And then recursive algorithms?

- 1. Start: SLIs Availability (5xx) & Latency (sec) to provide a baseline
- 2. Inspect Different Layers: Services, APIs, Edge, Client to equip SLIs
- 3. Add edge cases: SLIs for (ex. 400, 408, 409, client-side javascript errors, retry logic, etc)
- 4. **Map to customer interactions**: Authenticate/Log In, Complete a {{customer-action}}, etc.

Define Scope	Instrument	Assess Baseline	Understand Customer Goal	Define EB Policy (prod + dev + eng)	
		FOREVER			

An actual strategy - Completed! 💥 👋 👍 👻 👬

Easy

Time Windows

SLI & Error Budget

 $SLI_{TW} = rac{Good\ Events_{TW}}{Total\ Events_{TW}} * 100$

 $EB \ Current_{TW} = EB \ Max \ - \ (BadEvents_{TW})$

 $EB Max_{TW} = (1 - Objective) * (Total Events_{TW})$

$$\% EB Remaining (EBR\%) = \frac{EB_{Current-TW}}{EB_{Max-TW}} * 100$$

$$SLO_{default} = \left(\frac{bad}{(EB\% - 1)Total} + 1\right) * 100$$

Given a target %EBR calculate an Objective (Useful for when people say "I don't know what my objective should be")

Basic Predictive Math (Remember: Published != "right")

 $Burn Rate for Sampling Window = (\frac{Bad \ Events \ In \ Sampling \ Window}{EBMax \ for \ Sampling \ Window})$

Basic:

$$Time \ to \ Exhaust_{SW} = rac{EB_{Current} for \ Time \ Window}{(Bad_{SW} - EB_{Max-sw})}$$

Normalized Sampling Window (SW):

The EB_{Max-sw} is normalized based on the TW via mean, mode, median of the preceding SWs & BR ratio used to determine acceptable number of "bad" events or time slices.

$$Bad_{SW-derived} = rac{Mean(EB_{max-SW-1}....EB_{max-SW-N})}{Burn\ Rate_{SW}}$$

Mean

$$Time \ to \ Exhaust_{SW-mean} = rac{EB_{Current} for \ Time \ Window}{(Bad_{SW-derived} - Mean(EB_{max-SW-1}....EB_{max-SW-N}))}$$

Quesadillas & Avocados