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What Honeycomb does

● Ingests customer’s telemetry
● Indexes on every column
● Enables near-real-time querying

on newly ingested data

Our data ingest, storage, & analytics use case
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What Honeycomb really does

Our data ingest, storage, & analytics use case
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“
Ben Hartshorne, first employee at Honeycomb

Kafka is the beating heart of Honeycomb.

5
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10x growth in three years
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Source: CNCF
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ui.honeycomb.io

ui.h
oneycomb.io
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Agenda

10

When to use streaming systems
e.g. Honeycomb's use case (and yours?)

Bottlenecks to streaming
Producers? Brokers? Consumers?

Patterns for scaling
How to address each bottleneck

Patterns for observing
Because you can't run it unless you can see it

TL;DR: tricky to get right, but 
more supportable than 
request/response.
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Liz Fong-Jones
Field CTO, honeycomb.io

Terra Field
Staff Platform Engineer, honeycomb.io
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What streaming is good for
How streaming powers Honeycomb's telemetry pipeline
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Streaming data decouples systems

1313

Separation of stateless & stateful

Update producers & consumers 
on-demand without dropping data. 
(mostly! SLO != 100%)

Keep one single record of truth.

Multiple fan-out on the event bus

This need came later, but was incredibly 
helpful.

● Originally: one producer, one consumer.
● Now: two producers, three consumers
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Now all the state lives in one place…

1414

This is both good…

● Rolling restarts of everything else.
● Replay in case of incorrect consumer 

behaviour

… and scary.

● If it breaks, everything breaks.
● Running third party software = harder to 

debug/understand
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But here's how our use case is atypical

1515

● We don't keep weeks or months of history
● We only typically read the last hour
● 1-2 main topics, not hundreds
● Self-managed partition allocation (~100 partitions)
● High throughput per partition (50k msgs/sec/partition)
● No ksql
● No librdkafka; pure Go Shopify Sarama (Shopify team, we owe you a drink)



V1-23

Retriever-mutation

ZookeeperBeagleRetriever

https://github.com/egonelbre/gophers (CC0)

Customer interface

ui.honeycomb.io

api.honeycomb.io

Ingest

Amazon S3
• Secondary storage
• Query results

Ingest

Secondary storage

Orchestration

Kafka

Bastion hosts 
(internal network 

entry point)

Marketing site

Doodle Poodle Shepherd

Internet

Customer  telemetry
Management  and data API

Basset (cron) 
Triggers & SLOs

Segment processor

Query results Customer metadata

Queries

MySQL

Customer 
metadata

Service discovery

Stateless request processing

Stateful data storage

https://github.com/egonelbre/gophers
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Identifying & solving bottlenecks
What happens when the system exceeds constraints?
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Per-producer limits

2121

● Least outstanding requests LB for ingest
● Tune batch sizes (MB, seconds), queue depths, etc
● Guard against OOMs
● Avoid persistently bad partitions
● Allocate load between partitions
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Broker limits

22

● CPU
○ Use Graviton (ideally im4gn/is4gen)

● On-disk storage
○ Use smaller NVMe for predictable latency
○ Use tiered storage for bulk, less frequently accessed

■ DIY tiering w/ writeback cache does not work. We tried it.
○ We do not recommend use of EBS volumes for scaling out (latency, cost)

● Auto-balancing
● Horizontal scale-out (if needed)

22
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Per-consumer limits

23

● Annoying: Kafka limits consumer-broker BW regardless of distinct partitions.
● Run more brokers (or map consumers:partitions 1:1) if all else fails.
● Watch out for consumer group rebalancing

○ Rolling restarts are a good SRE practice everywhere EXCEPT here
○ (but this advice may change with sticky consumer group assignment)

● You are only as good as your offset commit

23
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Optimizations to consider
How to get the most out of your cluster
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Consider not running brokers yourself

2525

● Confluent Cloud, Google Cloud 
Pub/Sub, Amazon Kinesis, etc.

● Run. Less. Software.
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Use zstd. Seriously.

2626

● CPU is ~cheaper than network.
● 20%+ savings on bandwidth vs snappy
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Fully utilise Kafka's replication

● DTAZ = $$$$
● Don't re-copy data between AZs; read from followers
● Don't pay for more durability than you need (Kafka already provides R=3)
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Use the most efficient base you can

2828

Hardware
● Be careful of unknown unknowns

○ There may be dimensions 
you're unaware of.

● Burst balances create metastable 
systems

○ There may be dimensions 
you're unaware of.
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Finding the right way to migrate Kafka
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Our month of Kafka pain

Read more: go.hny.co/kafka-lessons

Longtime Confluent Kafka users

First to use Kafka on Graviton2 at scale

Changed multiple variables at once

● move to tiered storage
● i3en → c6gn
● AWS Nitro

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/
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Unexpected constraints

Read more: go.hny.co/kafka-lessons

We thrashed multiple dimensions.

We tickled hypervisor bugs.

We tickled EBS bugs.

Burning our people out wasn't worth it.

But we were finally able to move forward in 
Dec 2021 with im4gn!

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/
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Finding the right way to migrate Kafka
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Use the most efficient base you can

3434

Hardware
● Be careful of unknown unknowns

○ There may be dimensions 
you're unaware of.

● Burst balances create metastable 
systems

○ There may be dimensions 
you're unaware of.

Software

● Profile, profile, profile.
● Use Corretto JVM, not GetOpenJDK
● Use a well-tuned GC algorithm
● Upgrade your JNI deps (eg Zstd)
● Replace Java crypto libraries with 

AWS Corretto Crypto Provider
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Continuously chaos test your DR strategy

3636

● Weekly consumer and broker replacement to verify cold start
● Remember: an untested backup is not a restore.
● Leave plenty of room for unexpected scenarios
● In streaming, headroom = time before pear-shaped
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Observing streaming systems
How we make sure everything is working correctly
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Application vs system observability

4040

App level: trace spans & links

● Periodic trace spans per consumer ("tick")
● Heavily sampled produce requests
● Trace links between consume & produce

System level: broker metrics

● Basics: Msgs/sec, CPU, URP, Disk
● Advanced: GC, Network, Controller, 

Rebalancing
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Application vs system SLOs

4444

App level: many SLOs

● SLOs on producer write success/latency
● SLOs on consumer freshness 

per-consumer
● Implied SLO for durability (~never lose 

data)

System level: No SLOs.

● Because we use the 
producer/consumer views instead!
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Future work
Where we want to go next
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Broker self-balancing sometimes sticks

Leadership imbalance causes CPU anomalies/perf pain

Long-term partition imbalance causes operational pain

Short-term spikes on specific partitions from new customers cause pain

Kafka is the beating heart, but should not produce toil.

Non-goal: k8s. None of these problems are things k8s would solve for us.

tl;dr better balancing & auto-healing
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hny.co/srecon23-americas

Visit our booth!

@lizthegrey & @rainofterra
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Observability 
Engineering
Get our new book, free!

@lizthegrey
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Questions?
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www.honeycomb.io

https://www.honeycomb.io/

