
V1-23

Scaling Telemetry Systems
Reliability best practices for streaming data

Liz Fong-Jones & Terra Field
Field CTO Staff Platform Engineer
@lizthegrey @rainofterra

V1-23

Scaling Telemetry Systems
Reliability lessons for streaming data

Liz Fong-Jones & Terra Field
Field CTO Staff Platform Engineer
@lizthegrey @rainofterra

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

What Honeycomb does

● Ingests customer’s telemetry
● Indexes on every column
● Enables near-real-time querying

on newly ingested data

Our data ingest, storage, & analytics use case

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

What Honeycomb really does

Our data ingest, storage, & analytics use case

V1-23

“
Ben Hartshorne, first employee at Honeycomb

Kafka is the beating heart of Honeycomb.

5

V1-23

10x growth in three years

V1-23

10x growth in three years

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 88

Source: CNCF

V1-23

ui.honeycomb.io

ui.h
oneycomb.io

ui.honeycomb.io
OpenTelemetry

Unpacked
Into

Columns

VISUAL ANALYSIS LOOPSTORAGE + PROCESSINGDATA GENERATION

Honeycomb API

Realtime Ingest
Auth and validation

Unlimited users can store
thousands of dimensions at
no additional cost and query
any arbitrary combinations
without pre-aggregation.

Proprietary distributed
computing and parallelized
processing returns query
results in < 3 seconds across
billions of rows of data.

Query Engine

“Wide events” packed with
as much context as you
need for debugging

Metrics Data

Refinery
User-controlled

dynamic tail sampling

Columnar Datastore
High-cardinality
column file

Segment with
time range

Column

Column

Column

Column

Column

Column

Amazon Simple Storage
Service (Amazon S3)

Segment

Segment

Segment

Segment

Segment

Segment

Events contain many
fields and distinct
values

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Context

Logging Data

Query Result
History

Shared team
intelligence

Query
Builder UI

Intuitive GUI with
multiple group-by

Graph Rendering
Click through

visuals based on
granular data

Trace Span Data

Jaeger

Ruby

Java

GoJavaScript

.NET

Python

Front-End

AWS Elastic
Beanstalk

Amazon Relational
Database Service
(Amazon RDS)

Amazon Elastic
Kubernetes Service
(Amazon EKS)

OpenTelemetry

AWS Elastic
Load Balancing

Amazon
CloudWatch Prometheus

Host Metrics App Metrics

AWS Lambda

STREAMING INGEST

V1-23

Agenda

10

When to use streaming systems
e.g. Honeycomb's use case (and yours?)

Bottlenecks to streaming
Producers? Brokers? Consumers?

Patterns for scaling
How to address each bottleneck

Patterns for observing
Because you can't run it unless you can see it

TL;DR: tricky to get right, but
more supportable than
request/response.

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 11

Liz Fong-Jones
Field CTO, honeycomb.io

Terra Field
Staff Platform Engineer, honeycomb.io

V1-23

What streaming is good for
How streaming powers Honeycomb's telemetry pipeline

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Streaming data decouples systems

1313

Separation of stateless & stateful

Update producers & consumers
on-demand without dropping data.
(mostly! SLO != 100%)

Keep one single record of truth.

Multiple fan-out on the event bus

This need came later, but was incredibly
helpful.

● Originally: one producer, one consumer.
● Now: two producers, three consumers

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Now all the state lives in one place…

1414

This is both good…

● Rolling restarts of everything else.
● Replay in case of incorrect consumer

behaviour

… and scary.

● If it breaks, everything breaks.
● Running third party software = harder to

debug/understand

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

But here's how our use case is atypical

1515

● We don't keep weeks or months of history
● We only typically read the last hour
● 1-2 main topics, not hundreds
● Self-managed partition allocation (~100 partitions)
● High throughput per partition (50k msgs/sec/partition)
● No ksql
● No librdkafka; pure Go Shopify Sarama (Shopify team, we owe you a drink)

V1-23

Retriever-mutation

ZookeeperBeagleRetriever

https://github.com/egonelbre/gophers (CC0)

Customer interface

ui.honeycomb.io

api.honeycomb.io

Ingest

Amazon S3
• Secondary storage
• Query results

Ingest

Secondary storage

Orchestration

Kafka

Bastion hosts
(internal network

entry point)

Marketing site

Doodle Poodle Shepherd

Internet

Customer telemetry
Management and data API

Basset (cron)
Triggers & SLOs

Segment processor

Query results Customer metadata

Queries

MySQL

Customer
metadata

Service discovery

Stateless request processing

Stateful data storage

https://github.com/egonelbre/gophers

V1-23

Event batch

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Indexing worker

Field
index

Field
index

Field
index

S3

Indexing worker

Field
index

Field
index

Field
index

Indexing worker

Field
index

Field
index

Field
index

V1-23

Event batch

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Indexing worker

Field
index

Field
index

Field
index

S3

Indexing worker

Field
index

Field
index

Field
index

Indexing worker

Field
index

Field
index

Field
index

V1-23

Event batch

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Indexing worker

Field
index

Field
index

Field
index

S3

Indexing worker

Field
index

Field
index

Field
index

Indexing worker

Field
index

Field
index

Field
index

replay

V1-23

Identifying & solving bottlenecks
What happens when the system exceeds constraints?

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Per-producer limits

2121

● Least outstanding requests LB for ingest
● Tune batch sizes (MB, seconds), queue depths, etc
● Guard against OOMs
● Avoid persistently bad partitions
● Allocate load between partitions

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Broker limits

22

● CPU
○ Use Graviton (ideally im4gn/is4gen)

● On-disk storage
○ Use smaller NVMe for predictable latency
○ Use tiered storage for bulk, less frequently accessed

■ DIY tiering w/ writeback cache does not work. We tried it.
○ We do not recommend use of EBS volumes for scaling out (latency, cost)

● Auto-balancing
● Horizontal scale-out (if needed)

22

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Per-consumer limits

23

● Annoying: Kafka limits consumer-broker BW regardless of distinct partitions.
● Run more brokers (or map consumers:partitions 1:1) if all else fails.
● Watch out for consumer group rebalancing

○ Rolling restarts are a good SRE practice everywhere EXCEPT here
○ (but this advice may change with sticky consumer group assignment)

● You are only as good as your offset commit

23

V1-23

Optimizations to consider
How to get the most out of your cluster

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Consider not running brokers yourself

2525

● Confluent Cloud, Google Cloud
Pub/Sub, Amazon Kinesis, etc.

● Run. Less. Software.

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Use zstd. Seriously.

2626

● CPU is ~cheaper than network.
● 20%+ savings on bandwidth vs snappy

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 2727

Fully utilise Kafka's replication

● DTAZ = $$$$
● Don't re-copy data between AZs; read from followers
● Don't pay for more durability than you need (Kafka already provides R=3)

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Use the most efficient base you can

2828

Hardware
● Be careful of unknown unknowns

○ There may be dimensions
you're unaware of.

● Burst balances create metastable
systems

○ There may be dimensions
you're unaware of.

V1-23

Finding the right way to migrate Kafka

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Our month of Kafka pain

Read more: go.hny.co/kafka-lessons

Longtime Confluent Kafka users

First to use Kafka on Graviton2 at scale

Changed multiple variables at once

● move to tiered storage
● i3en → c6gn
● AWS Nitro

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Unexpected constraints

Read more: go.hny.co/kafka-lessons

We thrashed multiple dimensions.

We tickled hypervisor bugs.

We tickled EBS bugs.

Burning our people out wasn't worth it.

But we were finally able to move forward in
Dec 2021 with im4gn!

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/

V1-23

Finding the right way to migrate Kafka

V1-23

Finding the right way to migrate Kafka

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Use the most efficient base you can

3434

Hardware
● Be careful of unknown unknowns

○ There may be dimensions
you're unaware of.

● Burst balances create metastable
systems

○ There may be dimensions
you're unaware of.

Software

● Profile, profile, profile.
● Use Corretto JVM, not GetOpenJDK
● Use a well-tuned GC algorithm
● Upgrade your JNI deps (eg Zstd)
● Replace Java crypto libraries with

AWS Corretto Crypto Provider

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 3535

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Continuously chaos test your DR strategy

3636

● Weekly consumer and broker replacement to verify cold start
● Remember: an untested backup is not a restore.
● Leave plenty of room for unexpected scenarios
● In streaming, headroom = time before pear-shaped

V1-23

Event batch

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Indexing worker

Field
index

Field
index

Field
index

S3

Indexing worker

Field
index

Field
index

Field
index

Indexing worker

Field
index

Field
index

Field
index

V1-23

Event batch

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Partition queue

Single event

Single event

Single event

Indexing worker

Field
index

Field
index

Field
index

S3

Indexing worker

Field
index

Field
index

Field
index

Indexing worker

Field
index

Field
index

Field
index

V1-23

Observing streaming systems
How we make sure everything is working correctly

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Application vs system observability

4040

App level: trace spans & links

● Periodic trace spans per consumer ("tick")
● Heavily sampled produce requests
● Trace links between consume & produce

System level: broker metrics

● Basics: Msgs/sec, CPU, URP, Disk
● Advanced: GC, Network, Controller,

Rebalancing

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 4141

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 4242

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 4343

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved.

Application vs system SLOs

4444

App level: many SLOs

● SLOs on producer write success/latency
● SLOs on consumer freshness

per-consumer
● Implied SLO for durability (~never lose

data)

System level: No SLOs.

● Because we use the
producer/consumer views instead!

V1-23

Future work
Where we want to go next

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 4646

Broker self-balancing sometimes sticks

Leadership imbalance causes CPU anomalies/perf pain

Long-term partition imbalance causes operational pain

Short-term spikes on specific partitions from new customers cause pain

Kafka is the beating heart, but should not produce toil.

Non-goal: k8s. None of these problems are things k8s would solve for us.

tl;dr better balancing & auto-healing

V1-23

hny.co/srecon23-americas

Visit our booth!

@lizthegrey & @rainofterra

V1-23

© 2023 Hound Technology, Inc. All Rights Reserved. 48

Observability
Engineering
Get our new book, free!

@lizthegrey

V1-23

Questions?

V1-23

www.honeycomb.io

https://www.honeycomb.io/

