
Operating Elasticsearch at Scale!

Agenda • Introductions

• Search Platform @ PayPal

• Elasticsearch Primer

• Making Elasticsearch truly Elastic

• Managing Elasticsearch @ Scale

• Elasticsearch in action!

• Q & A

Introductions

Vikram
Ramakrishnan

Senior Manager,
Technology Platforms & Experience

15 years of industry experience with
specific focus in the areas of Large scale
distributed systems, Enterprise Search & Big Data

vikramakrishnan@paypal.com
https://www.linkedin.com/in/vikramakrishnan

Aishwarya
Sankaravadivel

Senior Software Engineer
Technology Platforms & Experience

Passionate technologist with deep expertise in
managing Large scale Elasticsearch deployments
& Reactive systems

asankaravadivel@paypal.com
https://www.linkedin.com/in/aishwaryasankar/

Search Platform @ PayPal

Fully Managed Search
offering for PayPal Inc.

1500+ nodes

20+ Billion
Ingests / day

50+ Million
Searches / day

4+ PB of Data

Custom Security Plugin

Custom Monitoring &
Alerting

Other Offerings

Elasticsearch Primer

Distributed

Restful APIs
API driven and all actions can be
performed via simple APIs using
JSON over HTTP

Supports replication, sharding &
routing

Open Source

Schema Free
Supports JSON structured
documents, detects types and
makes them searchable.

Released in 2010 and built on
top of Apache Lucene

Elasticsearch Primer

Fuzzy Searches

Powerful
Visualizations
Tools like Kibana, Grafana to
provide deep actionable insights

Autocomplete, ”Did you mean”,
Suggestions.

(un)Structured Searches

Aggregations
Bucketing, Metric, Pipelining

Full text search, Faceted
Navigation, Pagination

Elasticsearch Primer

Improved Observability Realtime, Actionable Insights

What’s in it for SREs?

Elasticsearch Primer
Things to know before we dig deep…

• Cluster

• Node

• Document

• Index

• Field

• Mapping

• Shards

• Routing

Elasticsearch Primer
Anatomy of an Elasticsearch cluster

*master

P1

R3

P2

R1

P3

R2

Primary Shard

Replica Shard

Elasticsearch Primer
Anatomy of an Indexing request

*master

P1

R3

P2

R1

P3

R2

Index request

route request based
on id

forward to replica
shard(s)

1 2

3

Elasticsearch Primer
Dissecting Indexing

Term Document

quick 1

brown 1

fox 1

jumped 1

over 1

lazy 1, 2

dog 1, 2

two 2

dogs 2

slower 2

less 2

rover 2

The Quick brown fox jumped
over the lazy dog

The two lazy dogs were slower
than the less lazy dog, Rover

source text

doc 1 doc 2 Inverted Index

stop words
filter

quick jumped

over

foxbrown

lazy dog

slowertwo lazy dogs

dogless lazy rover

lower case
filter

the quick
jumped

over

foxbrown

the lazy dog than

slowerweretwothe lazy dogs

dogthe less lazy rover

standard
tokenizer

The Quick jumped

over

foxbrown

the lazy dog than

slowerweretwoThe lazy dogs

dogthe less lazy Rover

The Quick brown fox jumped over the lazy
dog

The two lazy dogs were slower than the
less lazy dog, Rover

html_strip
filter

Elasticsearch Primer
Anatomy of a search request.

*master

P1

R3

P2

R1

P3

R2

forward to every
primary / replica
shard of the index

1

3

Search request2

Gather globally
sorted result set of
doc ids

Elasticsearch Primer
Dissecting a search request.

Term Document

quick 1

brown 1

fox 1

jumped 1

over 1

lazy 1, 2

dog 1, 2

two 2

dogs 2

slower 2

less 2

rover 2

Inverted Index

Search for “The quick Brown Dog”

stop words
filter

quick brown dog

lower case
filter

the quick brown dog

standard
tokenizer

The quick Brown Dog

The Quick Brown Dog
html_strip
filter

quick

brown

dog

Elasticsearch Primer
Installation

$ curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-
{VERSION}.tar.gz

$ tar –xvf elasticsearch-{VERSION}.tar.gz

$ cd elasticsearch-{VERSION}/bin

$./elasticsearch

Elasticsearch Primer
Installation

Now, how do we

scale this for the

enterprise?

Scaling Elasticsearch!

Scaling Elasticsearch!

SCALABILITY?

ØScale Up

Scaling Elasticsearch!

ØScale Up

ØScale Out

Scaling Elasticsearch!

Data Volume

Scale!

Search

Ingestion

Scaling Elasticsearch!

ØMemory / CPU / IO / Network Issues

ØSub-optimal Queries

ØMapping Explosion

ØUndersized / Oversized shards

Scaling Elasticsearch!

Is Elasticsearch
truly elastic?

Need to process ‘X’ million / minute additionally.

Problem#1 : Low Ingestion Throughput

Learnings

Ø _routing for Bulk requests

Ø index.refresh_interval

Ø number_of_shards, total_shards_per_node

Ø index.translog.durability:async

Scaling Elasticsearch!

Problem #2 : Node instabilities due to Mapping Explosion and Sparse Fields

Scaling Elasticsearch!

Problem #2 : Node instabilities due to Mapping Explosion and Sparse Fields

Scaling Elasticsearch!

Ø Mapping Explosion

Problem #2 : Node instabilities due to Mapping Explosion and Sparse Fields

Scaling Elasticsearch!

Ø Mapping Explosion

Ø Sparse fields

Problem #2 : Node instabilities due to Mapping Explosion and Sparse Fields

Scaling Elasticsearch!

Ø Keep a watch on mapping.

Ø Split indices.

Ø Date based indices works best for logs monitoring!

Learnings:

20% disk space

13% search latency

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Example Queries:

#1 Group By operation on a Id field

{
"aggs": {

"ids": {
"terms": {

"field": ”emailId"
}

}
}

}

[{
"key": ”a@xxx.com",
"doc_count": 1

}, {
"key": ”b@yyy.com",
"doc_count": 1

}, {
"key": ”c@zzz.com",
"doc_count": 1

}………]

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Example Queries:

#2 Retrieve all documents from Elasticsearch

_search?scroll=1m
{

"query": {
"match_all": {}

}
}

{
"scroll": "1m",
"scroll_id" :
"cXVlcnlUaGVuRmV0Y2T="

}

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Example Queries:

#3 Multiple levels of aggregations

{
"aggs": {

"date": {
"aggs": {

"customer": {
"aggs": {

"device": {
"aggs": {

"type": {
"aggs": {

"action":{
... }

}

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Example Queries:

#4 Wildcard / Regex Queries

{
"query": {

"wildcard": {
"field": "*foo"

}
}

}

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings

Query Optimizer

Gate Keeper

Query Logger

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Logger

Ø Logging in Elasticsearch

Is index.search.slowlog.* suffice?

Ø Distinct Query Logger

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Ø Intercept and Act.

Ø Proactively prevent incidents in LIVE.

Ø Example: Time range > 48 hours | Nested Aggregations level is >10

Learnings : Gate Keeper

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Optimizer

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Optimizer

{"index": ["INDEXNAME-*"]}
{"query":

{"range":
{"timestamp": {
"gte": <timestamp>,
"lte": <timestamp>}
}..

.}...
}

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Optimizer

{"index": ["INDEXNAME-*"]}
{"query":

{"range":
{"timestamp": {
"gte": <timestamp>,
"lte": <timestamp>}
}..

.}...

INDEXNAME-2019-06

INDEXNAME-2019-05

INDEXNAME-2019-04

INDEXNAME-YYYY-MM

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Optimizer

{"index": ["INDEXNAME-*"]}
{"query":

{"range":
{"timestamp": {
"gte": <timestamp>,
"lte": <timestamp>}
}..

.}...

INDEXNAME-2019-06

INDEXNAME-2019-05

INDEXNAME-2019-04

INDEXNAME-YYYY-MM

Query
Optimizer

Problem #3 : Expensive/sub optimal queries – A threat to availability!

Scaling Elasticsearch!

Learnings : Query Optimizer

Ø Reduce the number of indices(shards)that are being queried.

Ø Reorder the queries for reducing the scan margin *

Search latency by 25% and we observed better availability J

Problem #4: Oversized Shards

Scaling Elasticsearch!

When?

Ø Shards assigned per index is incorrect.

Ø Skewness in the values of the routing key.

Ø Anticipate the future and assign the shards.

Ø Split

Ø Re-index

Learnings

Managing

Elasticsearch!

Managing Elasticsearch!

Ø Monitoring your clusters

Ø Securing Elasticsearch

Ø Upgrading Clusters

How do we
police the Police?

When Availability, is the top priority!

Monitoring
your

clusters!

Managing Elasticsearch!

COLLECT SHIP ANALYZE ALERT ACT

Ø Index

Ø Shard

Ø Thread Pool

Ø JVM

Ø Os & Process

field data, docs, merge, refresh

type, state, docs

type, queue, rejected, max

heap_used, gc collection count and
time, buffer pools

CPU Load, Memory, File descriptors

Collect Node stats from every node

Managing Elasticsearch!

Node 1

MONITORING
CLUSTER

LOGS CLUSTER

Node N

Node 1 Node n

COLLECT SHIP ANALYZE ALERT ACT

Managing Elasticsearch!

Node 1

MONITORING
CLUSTER

LOGS CLUSTER

Node N

Node 1 Node n

COLLECT SHIP ANALYZE ALERT ACT

Managing Elasticsearch!

COLLECT SHIP ANALYZE ALERT ACT

Securing Elasticsearch!

Ø End to End TLS/SSL

Ø Authentication & Authorization

In-House Guard Plugin

Ø Audit Logging

Ø Third party integrations with LDAP/SAML

Why do we need security?

Security features, free in Elasticsearch?

Upgrading Elasticsearch!

Must do checks:

Ø Are queries backward compatible?

Ø Mapping changes between versions?

Approach 1: Parallel cluster with dual ingestion

Approach 2: Re-index from remote

It’s tough only when you are in <5.X versions!

Demo

Q & A

