
Programming Experience Might Not Help in Comprehending

Obfuscated Source Code Efficiently

Norman Hänsch1, Andrea Schankin2, Mykolai Protsenko3

Felix Freiling1, Zinaida Benenson1

1Friedrich-Alexander-Universität Erlangen-Nürnberg
2Karlsruhe Institute of Technology

3Fraunhofer Institute for Applied and Integrated Security

August 14, 2018

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?
� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?
� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?
� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?

� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?
� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

Background - Software Obfuscation

� Software obfuscation: protect programs by making them harder to understand

�

Who obfuscates? Why?

Software vendors secure their intellectual property
Hackers make their malicious code harder to understand

� Collberg et al. (Technical Report, 1997):
� Potency: To what degree is a human reader confused?
� Resilience: How well an obfuscation methods up under an attack from an automatic

deobfuscator?
� Evaluation based on software metrics

� Ceccato et al. (Empirical Software Engineering, 2014): user studies

2 of 17

The Study - Replication and Novelty

Replication Study materials
Questionnaire
Code understanding (correctness, time, efficiency)
Obfuscation methods: Name Overloading (NO), Opaque Predicates (OP)

Novelty Code analysis behavior (actions & time spent on them)
The influence of experience
Evaluation of correctness of the answers
Study design

3 of 17

The Study - Replication and Novelty

Replication Study materials
Questionnaire
Code understanding (correctness, time, efficiency)
Obfuscation methods: Name Overloading (NO), Opaque Predicates (OP)

Novelty Code analysis behavior (actions & time spent on them)
The influence of experience
Evaluation of correctness of the answers
Study design

3 of 17

The Study - The Programs

Figure: Race Program Figure: Chat Program

4 of 17

The Study - Code Examples

Listing 1: Code obfuscated with Name Overloading (NO)

1 pub l i c void m1 (i n t i)
2 {
3 i f (f 2 2)
4 i f (f 1 9 == 0)
5 {
6 f 5 += i ;
7 i f (f 5 > f 6 / 10)
8 f 5 = f 6 / 1 0 ;
9 e l s e

10 i f (f 5 < f 7 / 10)
11 f 5 = f 7 / 1 0 ;
12 } e l s e [. . .]

5 of 17

The Study - Code Examples

Listing 2: Clear code from Race MovingCarModel.java

1 pub l i c void changeSpeed (i n t i)
2 {
3 i f (s t a r t e d)
4 i f (gas == 0)
5 {
6 speed += i ;
7 i f (speed > maxSpeed / 10)
8 speed = maxSpeed / 1 0 ;
9 e l s e

10 i f (speed < minSpeed / 10)
11 speed = minSpeed / 1 0 ;
12 } e l s e [. . .]

6 of 17

The Study - Code Examples

Listing 3: Code obfuscated with Opaque Predicates (OP)

1 pub l i c void changeSpeed (i n t i) {
2 i f (Node . g e t I () != Node . getH ()) {
3 l a s t F u e l = (0 L + time2) − (long) l a p ;
4 s t a r t e d = l a s t F u e l == 0L ;
5 Node . getF () . s e t L e f t (Node . getH () . g e t L e f t ()) ;
6 } e l s e {
7 Node . getG () . g e t L e f t () . swap (
8 Node . getG () . g e t R i g h t ()) ;
9 i f (s t a r t e d)

10 i f (Node . g e t I () == Node . getH ()) {
11 i f (gas == 0) {
12 i f (Node . getF () == Node . getG ()) {
13 Node . getF () . s e t L e f t (
14 Node . g e t I () . g e t R i g h t ()) ; [. . .]7 of 17

The Study - Study Design

Group 1st Program (clear code) 2nd Program (obfuscated)

1 Race: Rnd(Box,Laps) NO(Chat): Rnd(Messages,Users)
2 Race: Rnd(Box,Laps) OP(Chat): Rnd(Messages,Users)
3 Chat: Rnd(Messages,Users) NO(Race): Rnd(Box,Laps)
4 Chat: Rnd(Messages,Users) OP(Race): Rnd(Box,Laps)

8 of 17

The Study - Demographics of the Participants

� 66 participants
� 44 bachelor students
� 20 master students
� 2 PhD students

� 24.2% already participated in a course related to software obfuscation

9 of 17

Results - Code Comprehension

Clear

Clear NO

vs NO

vs OP vs OP

Correctness -0.113

-0.154 -0.079

Efficiency -0.312*

-0.332** 0.045

Total time 0.338**

0.276* -0.156

Time correct 0.351*

0.193 -0.260

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

10 of 17

Results - Code Comprehension

Clear Clear

NO

vs NO vs OP

vs OP

Correctness -0.113 -0.154

-0.079

Efficiency -0.312* -0.332**

0.045

Total time 0.338** 0.276*

-0.156

Time correct 0.351* 0.193

-0.260

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

10 of 17

Results - Code Comprehension

Clear Clear NO
vs NO vs OP vs OP

Correctness -0.113 -0.154 -0.079
Efficiency -0.312* -0.332** 0.045
Total time 0.338** 0.276* -0.156
Time correct 0.351* 0.193 -0.260

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

10 of 17

Results - Behavior

Clear

Clear NO

vs NO

vs OP vs OP

Number of:
File open commands 0.451**

0.058 -0.373**

Advanced commands 0.352**

0.282* -0.106

Program executions 0.243

0.356** -0.104

Debugging mode 0.420**

0.349** 0.030

Time spent on:
Program executions 0.290*

0.278* -0.014

Debugging mode 0.433**

0.308* -0.079

Code reading 0.080

0.016 -0.081

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

11 of 17

Results - Behavior

Clear Clear

NO

vs NO vs OP

vs OP

Number of:
File open commands 0.451** 0.058

-0.373**

Advanced commands 0.352** 0.282*

-0.106

Program executions 0.243 0.356**

-0.104

Debugging mode 0.420** 0.349**

0.030

Time spent on:
Program executions 0.290* 0.278*

-0.014

Debugging mode 0.433** 0.308*

-0.079

Code reading 0.080 0.016

-0.081

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

11 of 17

Results - Behavior

Clear Clear NO
vs NO vs OP vs OP

Number of:
File open commands 0.451** 0.058 -0.373**
Advanced commands 0.352** 0.282* -0.106
Program executions 0.243 0.356** -0.104
Debugging mode 0.420** 0.349** 0.030

Time spent on:
Program executions 0.290* 0.278* -0.014
Debugging mode 0.433** 0.308* -0.079
Code reading 0.080 0.016 -0.081

Table: Wilcoxon & Mann-Whitney-U tests; *p < .05, **p < .01
Effect sizes r (no effect, small, medium)

11 of 17

The Study - Experience

� Survey questions
� Programming Experience: quality and type of code written so far
� Obfuscation Experience: experience with obfuscation and debugging
� Java Experience: experience with Java and using Eclipse

� Experiment
� Comprehension Skills: efficiency in working on clear code

� k-means cluster analysis:
� 21 beginners
� 45 experienced participants

12 of 17

The Study - Experience

� Survey questions
� Programming Experience: quality and type of code written so far
� Obfuscation Experience: experience with obfuscation and debugging
� Java Experience: experience with Java and using Eclipse

� Experiment
� Comprehension Skills: efficiency in working on clear code

� k-means cluster analysis:
� 21 beginners
� 45 experienced participants

12 of 17

Results - Experience

� Experience leads to significant differences concerning:

ω2 p Measurement

0.16 ** Correctness
0.10 ** Efficiency
0.13 ** Advanced commands
0.13 ** Debugging mode
0.05 * Time spent debugging

Table: ANOVA; *p < .05, **p < .01;
Effect size ω2 (small, medium, large effect)

13 of 17

Results - Exp. x Obf.: Behavior

Figure: ω2 = 0.06* significant difference (ANOVA; *p < .05, **p < .01.)

14 of 17

Results - Exp. x Obf.: Behavior

Figure: ω2 = 0.09** significant difference (ANOVA; *p < .05, **p < .01.)

15 of 17

Results - Exp. x Obf.: Code Comprehension

Figure: ω2 = 0.01* significant difference (ANOVA; *p < .05, **p < .01.)

16 of 17

Summary

1. Confirmation of all findings by Ceccato et al.

2. Empirical support of the taxonomy of Collberg et al.

3. Code comprehension behavior on obfuscated software may be different from
comprehension on traditional programs.

4. Programming experience might not help in comprehending obfuscated source code
efficiently.

17 of 17

	Background
	The Study
	Summary

