

Walkie-Markie: Indoor Pathway Mapping Made Easy

Guobin (Jacky) Shen, Zhuo Chen, Peichao Zhang, Thomas Moscibroda and Yongguang Zhang Microsoft Research Asia The context of this work ...

- Location, location, location, ...
- Primarily focused on location inference algorithms
- Largely neglected the fundamental "enabler" Maps!
 "… assume the radio map is established offline in advance …"

• Such assumptions are not easy to fulfill, in practice.

Internal pathway map is of practical interest

- Maps = { floor plan, radio map, ... }
- Localizing users w.r.t pathways is of practical importance
 - Users move along pathways
 - Indoor locations (POIs) are connected via pathways

Problem & high-level approach

- How to build internal pathway maps for millions of buildings?
 - Professional onsite survey? Expensive and not scalable
 - Request floor plans? Impractical
 - Different owners, often proprietary, legacy buildings, frequent redecoration, etc.
 - Still missing hooks for localization
- Pathway mapping via user tracking and crowdsourcing!
 - User trajectory consists of portions of pathways
 - Possible to infer pathway maps from enough user trajectories
 - Dead Reckoning is possible with phone IMU-sensors

Goal and challenges

- Build a crowdsourcing system that can construct indoor pathway maps by ordinary pedestrians w/ mobile phones.
- Challenges:
 - Noisy IMU-based tracking results, and significant drift over time
 - Difficult to fuse data from different users
 - Start/stop anywhere, cover only a subset
 - Must handle user diversity and device diversity
 - Automatic, no special user attention, no change to user behavior

Core concept: phone perceivable landmark

- Motivating observation: landmarks
 - Real life UX people give directions w.r.t landmarks
 - Landmark: easily discoverable, stable, and at known location
 - Landmark can stop error propagation and merge different paths
- Phone perceivable pathway mark
 - A <u>stable</u> location on the pathway that can be <u>automatically discovered</u> and <u>unambiguously</u> <u>identified</u> by mobile phones with its on-device <u>sensors</u>
 - Visual landmarks: good for human, but not easily discoverable by devices!

Leverage WiFi Infrastructure for landmarks

- Wide deployment of WiFi infrastructure
 - Using AP? Coverage overly large, unknown position
 - Using WiFi fingerprints?
 - Good association between WiFi fingerprints and locations
 - Basis for state-of-the-art WiFi-based localization methods
- Challenges:
 - Difficult to model WiFi signal accurately
 - WiFi signal fluctuates over time, affected by multipath effects
 - Difficult to deal with device diversity
 - Different readings for the same WiFi signal on different devices

WiFi-defined landmark (WiFi-Mark)

- Key idea: don't look for AP, look for its 'shadow' on pathways

The mobile phone constantly measures received WiFi signal strength (RSS) while walking along a pathway

Pathways RSS increases or decreases RSS The location corresponding to ▲ when approaching or leaving the tipping point of RSS trend an Access Point (AP). Displacement is a WiFi-defined landmark. -- law of radio propagation AP -- a novel way to leverage WiFi \mathbf{V} Many such landmark opportunities exist. **AP Coverage**

Feasibility of WiFi-Mark

- Measurement study
 - Straight corridor 35m in length, two devices, very slow motion
 - Different time of day (morning, afternoon, evening, midnight)
 - Filtering with triangle window

- Invariant location, over ToD
 stable and consistent
- ➢ Obvious trend
 → easily discoverable by device
- ➤ Using trend, not value
 → insensitive to device type, device attitude

How to uniquely identify each WiFi-Mark?

- Large number of potential WiFi-Marks: O(#AP x #Pathways)
- Using AP identification (BSSID) is not enough
 - One AP can lead to multiple WiFi-Marks
 - Some good, some indistinguishable, and some false case

WiFi-Mark qualification and identification in effect

- Three-element tuple
 - BSSID of the master AP
 - Orientations, before and after the RSS tipping point
 - Neighborhood APs

WiFi-Mark: [BSSID, Orientation
defore, after>, Neighboring APs<(BSSID, ∆RSSI)>]

Possible WiFi-Mark variations

- Multiple possible observations for the same WiFi-Mark
 - Long scanning time & user motion
 - Magnetic sensor noise
 - Radio environment variation

WiFi-Mark stability in practice

• Stability and consistency among different settings

Offset between cluster centers (steps, 1step = 1tile = 0.51m)

Building total pathway map from crowdsources

- Users record WMs and also the trajectory in between
 - With some sorts of IMU-based tracking method (e.g., step counting)
- System fuses pathways from different users together
- Where are these WMs' real locations?

– Challenges: errors in WM positions and IMU measurements

Optimal coordinate assignment: Arturia algorithm

- A classical graph embedding problem
- Arturia uses additional info walking direction
- Based on spring relaxation concept
 - Treat WiFi-Mark clusters as nodes
 - Treat edges (measurements) as springs
 - Minimize the overall potential energy via iterations, move nodes according to the net force of all neighboring nodes.

Arturia algorithm

 Using displacement, makes it more localizable, as compared with using distance

 Using displacement leads to more effective update in each iteration

Algorithm comparison: Arturia vs Vivaldi vs AFL

Walkie-Markie system implementation

• Architecture: mobile clients + backend service

Visual results

(c) Inferred pathway map

63

110 125

41 55

(d) after 100min walk.

(d) Picture from flyer.

Some quantitative results

- Node (singular locations) discrepancy:
 - Max: 3m, 90%: 2m.
- Shape discrepancy:
 Max: 2.8m, 90%: 1.8m.
- System agility:
 - Well converged at 5-6 visits per path segment
- When applied to localization:
 - 1.65m/2.9m for 50/90 percentile accuracy
 - Better than Radar (2.3m/5.2m)

Conclusion & Future work

• Future work: other types of phone perceivable landmarks

We're hiring: interns and FTEs. 🙂