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The context of this work ...

L ocation, location, location, ...

Primarily focused on location inference algorithms

Largely neglected the fundamental “enabler” — Maps!
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— “... assume the radio map is established offline in advance ...”

Such assumptions are not easy to fulfill, in practice.



Internal pathway map is of practical interest

« Maps = { floor plan, radio map, ... }

« Localizing users w.r.t pathways is of practical importance
— Users move along pathways
— Indoor locations (POIs) are connected via pathways
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Problem & high-level approach

* How to build internal pathway maps for millions of buildings?
— Professional onsite survey? — Expensive and not scalable

— Request floor plans? — Impractical
 Different owners, often proprietary, legacy buildings, frequent redecoration, etc.
« Still missing hooks for localization

« Pathway mapping via user tracking and crowdsourcing!
— User trajectory consists of portions of pathways
— Possible to infer pathway maps from enough user trajectories
— Dead Reckoning is possible with phone IMU-sensors



Goal and challenges

« Build a crowdsourcing system that can construct indoor
pathway maps by ordinary pedestrians w/ mobile phones.

« Challenges:

— Noisy IMU-based tracking results, and
significant drift over time

— Difficult to fuse data from different users

 Start/stop anywhere, cover only a subset : o
— Must handle user diversity and device diversity
— Automatic, no special user attention, no change to user behavior



Core concept: phone perceivable landmark

« Motivating observation: landmarks

— Real life UX — people give directions w.r.t landmarks
« Landmark: easily discoverable, stable, and at known location

— Landmark can stop error propagation and merge different paths

* Phone perceivable pathway mark
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Leverage WIFI Infrastructure for landmarks

» Wide deployment of WiFi infrastructure
— Using AP? — Coverage overly large, unknown position
— Using WiFi fingerprints?
» Good association between WiFi fingerprints and locations
« Basis for state-of-the-art WiFi-based localization methods

« Challenges:
— Difficult to model WiFi signal accurately
» WiFi signal fluctuates over time, affected by multipath effects

— Difficult to deal with device diversity
+ Different readings for the same WiFi signal on different devices



WiFi-defined landmark (WiFi-Mark)

- Key idea: don't look for AP look for its ‘shadow’ on pathways

The mobile phone constantly measures received WiFi
signal strength (RSS) while walking along a pathway

RSS increases or decreases
when approaching or leaving
an Access Point (AP).

-- law of radio propagation

Pathways
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The location corresponding to
the tipping point of RSS trend
is a WiFi-defined landmark.

-- a novel way to leverage WiFi

Many such landmark
opportunities exist.



Feasibility of WiFi-Mark

 Measurement study
— Straight corridor 35m in length, two devices, very slow motion
— Different time of day (morning, afternoon, evening, midnight)
— Filtering with triangle window
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How to uniquely identify each WiFi-Mark?

« Large number of potential WiFi-Marks: O(#AP x #Pathways)

« Using AP identification (BSSID) is not enough
— One AP can lead to multiple WiFi-Marks
— Some good, some indistinguishable, and some false case




WIiFi-Mark qualification and identification in effect

* Three-element tuple S
— BSSID of the master AP (BSSID)

— Orientations, before and
after the RSS tipping point

— Neighborhood APs

WiFi-Mark: [BSSID, Orientation<before, after>, Neighboring APs<(BSSID, ARSSI)>]
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Possible WIiFI-Mark variations

« Multiple possible observations for the same WiFi-Mark

— Long scanning time & user motion

— Magnetic sensor noise
— Radio environment variation
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WiFI-Mark stability in practice
 Stability and consistency among different settings

Stability Consistency

100% 100%

WiFi-Marks are easily detectable,

Percentile
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Building total pathway map from crowdsources
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« Users record WMs and also the trajectory in between
— With some sorts of IMU-based tracking method (e.g., step counting)

« System fuses pathways from different users together

* Where are these WMSs'’ real locations?
— Challenges: errors in WM positions and IMU measurements



* Aclassical graph embedding problem

 Arturia uses additional info — walking direction

« Based on spring relaxation concept
— Treat WiFi-Mark clusters as nodes
— Treat edges (measurements) as springs

— Minimize the overall potential energy via iterations, move
nodes according to the net force of all neighboring nodes.



Arturia algorithm

e Using displacement,
makes it more localizable,
as compared with using
distance

« Using displacement
leads to more effective
update in each iteration
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Algorithm comparison: Arturia vs Vivaldi vs AFL

e )
WiFi-Marks are stable (90% percentile: <2m),
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Walkie-Markie system implementation

 Architecture: mobile clients + backend service
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Visual results
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Some quantitative results

* Node (singular locations)
discrepancy:
— Max: 3m, 90%: 2m.

« Shape discrepancy:
— Max: 2.8m, 90%: 1.8m.

« System agility:
— Well converged at 5-6 visits per path segment

 When applied to localization:

— 1.65m/2.9m for 50/90 percentile accuracy
— Better than Radar (2.3m/5.2m)



Conclusion & Future work

/\ <\ —— user Walkin’,
4 device Markin’

Walkie-Markie

« Future work: other types of phone perceivable landmarks
<L

We’re hiring: interns and FTEs. ©




