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A SIMD has arrived on the desktop and

mobile

Nvidia Tegra3 Intel lvy Bridge
4 cores w/ 4 wide SIMD 4 cores w/ 8 wide SIMD

®  Both mobile devices and desktop computers now include single-instruction
multiple data (SIMD) units
= Potential for O(SIMD width) speed-ups!
®  Programming difficulties have led to relatively little adoption outside of low-
level efficiency code

®  We propose using a methodology of just-in-time specialization to
automatically generate SIMD instructions from a high-level Python
representation



Three Fingered Jack: Example

def matmul (A,B,Y,n):
for i in range(0,n):
for j in range(0,n):
for k in range (0,n):

Y[1)[J1=Y[1i] [J]+A[1] [k]+Bl[k][]];

1.4 Mflops/s

@tf]
I

@tfj
def matmul (A,B,Y,n) :
for i in range(0,n):
for j in range (0,n):
for k in range (0,n):
Y1) [31=Y[i] [J1+A[4i] [k]*B[k][J];

36 Gflops/s

" We start with matrix multiply written as three nested loops in Python

® By adding the @tfj decorator the Python runtime redirects execution to

our framework

= |f we can not optimize the loop nest, it will be executed by the Python

interpreter
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Three Fingered Jack

Custom PEs
@ IEEE P1364-2005

* IEEE Standard Verilog Hardware Description Language

= Three Fingered Jack (TFJ) is a subset of Python used to
generate GPU, CPU, and custom processing engine
implementations



‘§\ Why target loops?

®  Recent work in this space has focused on Map-Reduce data-parallel style
programming frameworks [1,2]

" Python3 removed the reduce() builtin

= “Removed reduce(). Use functools.reduce() if you really need it;
however, 99 percent of the time an explicit for loop is more readable.”[3]

" We chose to build our framework using for-loops and extracting
parallelism with compiler analysis techniques [4]

B&Q&m
HlFUTURE

[1] Catanzaro, Bryan, Michael Garland, and Kurt Keutzer. "Copperhead: compiling an embedded data parallel language." PPoPP. ACM, 2011.
[2] Rubinsteyn, Alex, et al. "Parakeet: a just-in-time parallel accelerator for python.” HotPar ‘“12. USENIX Association, 2012.

[3] http://docs.python.org/3.0/whatsnew/3.0.html

[4] Allen, John R., and Ken Kennedy. "Automatic loop interchange.” ACM SIGPLAN Notices. Vol. 19. No. 6. ACM, 1984.




Python as an optimization target?
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Algorithm: tfj_codegen
Input: R (Region to analyze for reordering)
k (Current loop nesting depth)
D (Dependence graph for the current region under analysis)
L (List of statements with associated dependence and nesting information)
Output: L (Updated list of statements)
1 Compute the set of strongly-connected components in
the dependence graph for the current region of interest
2 Topologically sort strongly-connected components according
to the dependence relationship to compute a set of m; € II blocks

3 formell
4 if m; has a cycle (it can not parallelized at this loop-nest level)
5 If legal, attempt loop interchange by shifting dependence carried
at deeper loop nesting depth (k + n) with the current level (k)
6 Remove new region graph, R; by removing
all edges that are not in m;
7 Update L;, with dependence and loop-nesting information for
the statements in 7;
8 Compute R; and D; with dependence and loop-nesting information for
the statements in ;
9 Call tfj_codegen(m;,k + 1,D;,L) for the region encapsulated by m;
10 else (m; can be parallelized at this loop-nest level)
11 Attempt to find a legal permutation of the loop-nests such that

a dependence-free loop is placed at the outer-most position and

a dependence-free loop with unit-stride memory access is placed

at the inner-most position, if found update nesting order for pi;
12 Update L;, with dependence and loop-nesting information for

the statements in 7;

®  We started with a classic parallelization algorithm [1] and modified it to

= Find unit-stride memory accesses to enable vectorization on desktop
and mobile CPUs

= Reorder loops such that multithreaded execution will be profitable

[1] Allen, Randy, and Ken Kennedy. Optimizing compilers for modern architectures. San Francisco: Morgan Kaufmann, 2002. 7



TFJ: Implementation

Implemented in Python [ Work in progress: }
1

( A if-conversion
Application ‘ Python AST -

Implemented in C++
(linked into interpreter) Generated at runtime

A A
| | |
Reordering - Code ‘ Parallel
Engine Generator Code

®  Entire compilation process happens at runtime — JIT parallelization /

vectorization
®  Analysis and code generator implemented in 13k lines of C++ and our code

generator is written in 9k lines of Python

Front-End




®  Five variants of each kernel or application
= Naive Python
= Python Libraries
= TFJ
= Untuned C++
= Hand-tuned C++
®  We evaluated TFJ on two different platforms
=  Desktop: Intel Core i7-2600
e 4 cores, 8 threads
e 8-wide SIMD (AVX)
e 34GHz
e LLVM 3.1 MCJIT used for code generation
= Mobile: Texas Instruments OMAP4460
e 2 cores, 2 threads
e 4-wide SIMD (NEON)
e 1.2GHz
e GCC4.7.3 used for code generation
®  Our benchmarks use single-precision floating-point numbers
= NEON only supports single-precision

PandaBoard ES



Evaluation — Kernels

Vector-vector addition with vectors of length 16M
= Canonical data-parallel benchmark
= Should achieve memory bandwidth-bound performance

W 2048x2048 matrix-matrix multiply

= Common kernel in many scientific, engineering, and multimedia
applications

= An efficient implementation should be compute-bound

Diagonal sparse matrix-vector multiply

= Diagonally-dominate matrix generated from conjugate gradient solution
of Horn-Schunck optical flow

Back propagation weight adjustment
= Key computation in training neural networks
= We adopted our implementation from Rodinia [1]

[1] Che, Shuai, et al. "Rodinia: A benchmark suite for heterogeneous computing.” ISWC 2009. IEEE, 2009.

10



MFlops/sec
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Evaluation — Kernel Performance Results

B Pure Python B Untuned C++ [ Hand-tuned C++ M Python Libraries = TF)

1128823
71570.2

35886.9

OMAP4460 i i OMAP4460

Vector Vector Addition Matrix Multiply Diagonal Sparse Matrix Vector Back propagation weight
Multiply adjustment
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® Bigidea: when resizing an image,
remove the “boring parts” of an
image

" Algorithm [1] uses convolution and
dynamic programming to iteratively
remove “uninteresting” connected
paths of pixels

Qtfj
def conv2d(I,O,K,ydim,xdim) :
for y in range(3,ydim):
for x in range (3, xdim) :
for yy in range(-2,3):
for xx in range(-2,3):
Olyl [x]+=\
Kl2+yy]l [2+4xx]*\
I[y+tyy] [x+xx];
Qtf3
def grad2d(I,0,K,ydim,xdim) :
for y in range (3,ydim) :
for x in range (3, xdim) :
Oyl [x]=\
(I[yJ[x 11-T[yl[x
vl[x-1]1-I[y]l[x
y-11[x]1-I[yl[x
Y-

) *\

) +\

) %\
11 [x1-I[yl[x]);

]
I ]

I ]
<I[ ]
Qt£j

def compute_cost (Y, G, ydim, xdim) :

for i in range(5,ydim) :
for j in range (5,xdim) :
Y11 [31=GIi]1[31+\

min (min(Y[i-1]1[3-11,Y[i-11[31),

Y[1i-1]1[3+1]);

\

Actual kernels used in
our Python implementation

[1] Avidan, Shai, and Ariel Shamir. "Seam carving for content-aware image resizing."

ACM Transactions on graphics (TOG). Vol. 26. No. 3. ACM, 2007.




Evaluation — Speech Recognition

®  Speech recognition has recently become a hot application on mobile

devices

MFCC
features

v

Active phoneme list

GMM

Phoneme

scores

» HMM search —>

Recognized
utterances

®  We modified a conventional speech recognizer [1] (written in C++) to work

with TFJ

= We embedded Python in the recognizer and reimplemented the core
inference engine in Python to demonstrate the power of TFJ

= 85% of the C++ run-time spent in kernels accelerated by TFJ

We use 60 seconds of audio in evaluation

= Runtime less than 60 seconds implies real-time performance

[1] Chong, Jike, et al. "Exploring recognition network representations for efficient speech inference
on highly parallel platforms.” InterSpeech. 2010.

13



Evaluation — Application Performance

B Untuned C++ M Hand-tuned C++ ™ Python Libraries B TF)

100000 - — .
Speech recognition is
i close to real-time
10000 © .
on mobile!
?1000 /
. 100 s

10 -

OMAP4460 i7-2600 OMAP4460 i7-2600

Seam Carving Speech Recognition

14
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)\  Evaluation — How well are we doing?

-

2048x2048 matrix-multiply

70000

60313.8

60000

50000
39293.6

40000

Mflops/s

30000

20000

10000

927.47 925.51 3719.93

GCC-03 GCC -ftree-vectorize -O3 ICC -03 -no-vec ICC-03 -vec ICC -03 -vec -parallel Python - TFJ

®  TFJ achieves ~65% of ICC’s best matrix-multiply performance

= |Intel’s BLAS library obtains greater than 5x better performance for the same
problem

®  Perhaps compiler-based optimizations are limited to a certain performance level
for the foreseeable future

= However, the SEJITS approach is selective
e |t can compose well with other specializers and libraries

Intel ICC 13.0.1 on an Intel SandyBridge i7-2600K
15



Conclusions & Future Work

= We have demonstrated
= A high-performance vectorizing and parallelizing JIT framework embedded in

Python
Untuned | Hand-tuned | Python
C++ C++ libraries
17-2600 3.14x 0.8 1.1x
OMAP4460 | 1.8x 0.6 0.9x

= Work in progress
= Backends for more targets
= OpenCL
= UCBerkeley / MIT vector-thread processors
= More support forirregular control flow
= |f-conversion
= Integrate with existing SEJITS frameworks
= ASP[1]
= Build more applications using TFJ

[1] Kamil, Shoaib, et al. "Portable parallel performance from sequential, productive,
embedded domain-specific languages.” PPoPP. ACM, 2012.



THANK YOU



I

| \  Backup slides

BACKUP



Evaluation — TFJ)’s Overhead

¥ Front-end B Compiler analysis and code-generation  Run-time code execution
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eiective cmpeaae

(SEJITS)

Key ldea: Generate, compile, and execute high
performance parallel code at runtime using
code transformation, introspection, and other
features of high-level languages.

Invisibly to the user.

[1] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick, and A.
Fox. SEJITS: Getting productivity and performance with selective embedded JIT specialization. In
Workshop on Programming Models for Emerging Architectures (PMEA 2009), Raleigh, NC, October

2009.



N4 Selective Embedded JIT Specialization

JN T (SENTS)

Productivity app

Py gmm()

—>  Compiler
analysis

Machine code

SEJITS generation
GJ ~
5 v oV
o AST
g ~ conversion

21



Evaluation — How well are we doing?

void mm_vO(float **Y, float **A, float **B) void mm_v1(float **__ restrict Y, void mm_v2(float Y[N][N],

{ float ** _ restrict A, float A[N][N],
inti,j,k; float ** _ restrict  B) float B[N][N])
for(i=0;i<N;i++) { {

for(j=0;j<N;j++) int i,j,k; inti,j,k;
for(k=0;k<N;k++) for(i=0;i<N;i++) for(i=0;i<N;i++)
YHIOT += AlkI*BKIL]; for(j=0;j<N;j++) for(j=0;j<N;j++)

} for(k=0;k<N;k++) for(k=0;k<N;k++)

\ Y001 += ALK BIKI; \ Y001 += ALK BLKII;
V: 2.2 GF/s V: 2.2 GF/s V: 9.4 GF/s
P: 6.6 GF/s P: 6.6 GF/s P: 36.7 GF/s

" TFJ achieves 98% of ICC’s best matrix-multiply performance

= |Intel’s BLAS library obtains greater than 5x better performance for the same
problem

" Perhaps compiler-based optimizations are limited to a certain performance level
for the foreseeable future

= However, SEJITS approach allows multiple approaches to parallel
programming to cooperate in the same environment

e Use the right tool for each programming problem

Intel ICC 12.0.4 on an Intel SandyBridge i7-2600K, N=2048,V=Vectorized,P=Vectorized+Multithreaded 22
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Key kernels in ParLab apps are vectorizable

Speech Processing

Contour Detection

Object Recognition

Optical Flow
Image Feature Extraction

Support Vector Machines

GMM evaluation

GMM training

Neural network training

Generalized Eigensolver for
solving normalized cuts

K-means clustering

Pair-wise vector computation
(e.g. X2distance)

Linear (Preconditioned
Conjugate Gradient) solver

2d convolution

Linear SVM classification

Evaluate likelihood of MFCC features
using multiple 39-dimensional
Gaussians

Expectation-maximization algorithm
used to train GMMs for multimedia
applications and speech recognition

Neural networks are used in both
multimedia and speech applications

Contour detection uses a diagonal
sparse matrix-vector multiply in the
eigensolver

Similar to pair-wise vector
computation but with conditional
updates

Comparing extracted features with
the trained model

Key kernels include matrix-vector
multiply, vector-vector add, and vector
scale

Used in SIFT for image blurring
The key kernel in classification with

linear support vector machines is
matrix-multiply

24



l/ \  TFJ applied to matrix-multiply

" Parallelizing compilers need static loop bounds for high quality results

void mm_n(float **Y, float **A, float **B, int n) {

int iij k: - ~
forli J=nii) ICC (n = 2048)
=0:j<n:j++
c;;(ﬁ(k;{);ﬂin;k)ﬁ) Static bounds: 6600 mflops/sec
\ YTl += AfKI*BIKIL]; L Dynamic bounds: 275 mflops/sec )

® However, using our SEJITS-style approach, we always know static loop
bounds and can apply compiler analysis at run-time

100000

TFJ run-times include 10000
time to generate code

1000
=] CC
wi=TF

Mflops/sec

100
For large matrices
TFJ is much faster

than ICC 14

0 1000 2000 3000 4000 5000
Matrix dimension (n)
25
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Outline

Selected Embedded JIT Specialization (SEJITS) approach
Gaussian Mixture Model & Applications

Covariance Matrix Computation & Code Variants
Specialization

Results



The shift to parallel processing

= Parallel processing is here

“¢ This shift toward increasing parallelism
is not a triumphant stride forward based

on breakthroughs in novel software and | GH il Y
architectures for parallelism; instead, z J :lftjm
this plunge into parallelism is actually a R o XPentium 1
®Pentium
retreat from even greater challenges 100 MHz xig g
that thwart efficient silicon - 80486
. . .y - 80386
implementation of traditional 10 MHz ls - *50286
uniprocessor architectures.”? . '2322
- The Berkeley View
Y 1 MHz o
4004
100kHz =

Intel Processor Clock Speed
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Evaluation — Seam Carving Overheads

¥ Front-end

B Compiler analysis and code-generation

 Run-time code execution

84.6707

13.4032

13.6609

0.576661

3.44804

0.844441

1.2905

0.661258

0.0660701

0.056824

0.0131841
0.0133722

0.0482178

0.0132449

0.00784302
0.00809407

0.0014019

OMAP4460

i7-2600
tfj_grad2d

0.000244141

OMAP4460 i7-2600

zeroKernel

OMAP4460

0.0152009

0.000921965

i7-2600

tfj_conv2d

0.0583191

OMAP4460

0.013536

0.00101614

i7-2600

dyn_prog
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 Run-time code execution

B Compiler analysis and code-generation

¥ Front-end
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