CITIN 5,
& o

\

QU
7
&

Vst s1oN

N

%
% O
SITas ARRS

AARHUS UNIVERSITY

ZKBoo: Faster Zero-Knowledge for Boolean
Circuits

Irene Giacomelli, Jesper Madsen and Claudio Orlandi

Usenix Security Symposium 2016

1/15

Zero-Knowledge (ZK) Arguments

Alice

v

N

Private Input : x

“l know x such that y = C(x)"

(C and y public)

v

Bob

Output:

“yes! / no!”

/15

In theory...

ZK protocols have many applications in designing
several crypto primitives!

3/15

In theory...

ZK protocols have many applications in designing
several crypto primitives!

. o
signature schemes —&*"

user identification protocols '

electronic voting systems

verifiable delegation of computation ﬁ

electronic payment system

15

In practice...

Real-world applications
need practically efficient solutions for proving general statement

15

In practice...

Real-world applications
need practically efficient solutions for proving general statement

[Gro10, Lipl2, GGPR13, Lip 13, DFGK14, GRo 15]

e SNARGs (Succinct Non-interactive ARGuments) @
.
[PGHR13, BCGTV13, BCTV14, CTV15, CFH'15]

o ZKGC (zero-knowledge from garbled circuits)
[Jawurek-Kerschbaum-Orlandi 2013]

/15

In practice...

Real-world applications
need practically efficient solutions for proving general statement

[Grol0, Lip12, GGPR13, Lip 13, DFGK14, GRo 15]
[PGHR13, BCGTV13, BCTV14, CTV15, CFH+15]

- proofs of small size, fast in verifying :-)
- large keys needed, slower in proving :-(

e SNARGs (Succinct Non-interactive ARGuments) @
.

o ZKGC (zero-knowledge from garbled circuits)
[Jawurek-Kerschbaum-Orlandi 2013]

/15

In practice...

Real-world applications
need practically efficient solutions for proving general statement

e SNARGs (Succinct Non-interactive ARGuments) -
[Gro10, Lip12, GGPR13, Lip 13, DFGK14, GRo 15] ® %
[PGHR13, BCGTV13, BCTV14, CTV15, CFHT15]

- proofs of small size, fast in verifying :-)
- large keys needed, slower in proving :-(

o ZKGC (zero-knowledge from garbled circuits)
[Jawurek-Kerschbaum-Orlandi 2013]
- proving time is decreased :-)
- interaction is required :-(

15

In practice...

Real-world applications
need practically efficient solutions for proving general statement

New!

¢ ZKBoo (Zero-Knowledge for Boolean circuits)
- can be made non interactive :-)
- fast in proving and verifying :-)
- the size of the proof grows linearly with the circuit size :-|

4/15

Comparison for C = SHA-1

“I know x such that y = SHA-1(x)"

Preproc. (ms) | Prover (ms) | Verifier (ms) | Proof size (B)
ZKBoo 0 13 5 454840
ZKGC* 0 > 19 > 25 186880
Pinocchio** 9754 12059 8 288

* estimates for the proof size and lower-bounds for the runtime

**[Parno-Howell-Gentry-Raykova 2013]

In the rest of this talk:

@ Description of the ZKBoo protocol

® Implementation results

/15

> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a

a

Input: x s.t. C(x) =y

/15

> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

Complete: if Alice and Bob honest and C(x) =y,
Pr[Bob outputs Y] =1

2> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

Soundness: from > 2 accepting conversations (a, e;, z;)
with e; # e; we can efficiently compute x" s.t. C(x') =y

> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

The protocol has soundness error ¢:
if Alice is cheating, then Pr[Bob outputs Y] < ¢

2> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

(Honest-Verifier) ZK property:
the distribution of (a, e, z) does not reveal info on x

> -Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}™

a a

Input: x s.t. C(x) =y

Sample e +— {0,1}¢

Output: Y / N

It can be made non-interactive!
(Fiat-Shamir heuristic)

> -Protocol Recap

£Clx) = e Complete:
XsLEO=Y if Alice honest, Pr[Bob says Y] =1
a e Soundness error:
if Alice cheats, Pr[Bob says Y] < ¢
e
e /K property: no info on x!
z

3 rounds, public coin — non-interactive
Y /N

Related work:
IKOS Construction

(or "MPC-in-the-head")
[Ishai-Kushilevitz-Ostrovsky-Sahai 2007]

9 9
Input: xs.t. C(x) =y 8
&
/N 8/ O

Output: Y / N

9/15

Related work:

IKOS Construction
(or "MPC-in-the-head")

[Ishai-Kushilevitz-Ostrovsky-Sahai 2007]

a

Input: xs.t. C(x) =y

&
/N
&—8

&

&
/

a

Output: Y / N

¢ a X-protocol with error 2/3 (not implemented!)

e ZK protocol with asymptotically good complexity;

/15

Circuit decomposition:

Goal: compute C(x) splitting the
computation in 3 branches s.t. looking at
any 2 consecutive branches gives
no info on x

10/15

Circuit decomposition:

Goal: compute C(x) splitting the
computation in 3 branches s.t. looking at
any 2 consecutive branches gives
no info on x

Let N be a fixed integer,

consider the following finite set of functions:

Share, Rec and
F— {ﬂ(j)a f2(j)7 ﬂ;(j)}j:L__ N

)

10/15

Circuit decomposition:

X
Goal: compute C(x) splitting the
computation in 3 branches s.t. looking at
w! w w) any 2 consecutive branches gives

no info on x

Let N be a fixed integer,

consider the following finite set of functions:

Share, Rec and
F— {ﬂ(j)a f2(j)7 ﬂ;(j)}j:L__ N

)

10/15

Circuit decomposition:

Goal: compute C(x) splitting the
computation in 3 branches s.t. looking at
any 2 consecutive branches gives
no info on x

Let N be a fixed integer,

consider the following finite set of functions:

Share, Rec and
F— {ﬂ(j)a f2(j)7 @U)}jzl,.. N

)

10/15

Circuit decomposition:

Goal: compute C(x) splitting the
computation in 3 branches s.t. looking at
any 2 consecutive branches gives
no info on x

Let N be a fixed integer,

consider the following finite set of functions:

Share, Rec and

F= {6 5

)

10/15

Circuit decomposition:

Goal: compute C(x) splitting the
,mmm oty e computation in 3 branches s.t. looking at

I L L !
Cow) ot w) o w any 2 consecutive branches gives
! b b | no info on x
A A
| | |
| L L | Let N be a fixed integer,
Cwl o b wl o wh consider the following finite set of functions:
L
I [
l T T Share, Rec and
I O
| : | : | i i i

o F={. 82 5
| | |
| W{V | | wév | | wév |

Y1 Y2 ¥3

10/15

Circuit decomposition:

Goal: compute C(x) splitting the
,mmm oty e computation in 3 branches s.t. looking at

I b b !
Cow) ot w) o w any 2 consecutive branches gives
! b b | no info on x
IR R
| | |
| L L | Let N be a fixed integer,
Cwl o b wl o wh consider the following finite set of functions:
S R
I [
| . | . |
1 | o | o | Share, Rec and
| | . | .
| : | : | i i i
o F={. 82 5
| | |
| wh | | wy | | wév |
g,Ll }2 }3 e correctness: y = C(x)
Rec
y

10/15

I L
(U 0

:WI I :W2

I : I

I I

I b

| b

| b

| : |

U

I b

I o

l N

I o

I o

I L T

| T

| b

Y

P WL, W

7

Circuit decomposition:

Goal: compute C(x) splitting the
- computation in 3 branches s.t. looking at
any 2 consecutive branches gives
no info on x

Let N be a fixed integer,

consider the following finite set of functions:

Share, Rec and
F— {ﬂ(j)a f2(j)7 @U)}jzl,.. N

©

A e correctness: y = C(x)

o 2-privacy: Ve, j (W, Wjet1, Yes2)
doesn't reveal info on x

10/15

/KBoo Protocol

Public data: C: {0,1}" — {0,1}" (boolean circuit) and y € {0,1}"

S

Input: x s.t. C(x) =y

ws

11/15

/KBoo Protocol

Public data: C: {0,1}" — {0,1}" (boolean circuit) and y € {0,1}"

e

Input: x s.t. C(x) =y

ws

11/15

/KBoo Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

e

Input: xs.t. C(x) =y

i

11/15

/KBoo Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

e

Input: xs.t. C(x) =y

wil b w) Wy
T v v
Y1 y2 ME]

ee{1,2,3

AN

11/15

/KBoo Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

Input: xs.t. C(x) =y

wiow W)
L P v
Y1 Y2 Y3

AN

ee{1,2,3

i

11/15

/KBoo Protocol

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

e

Input: xs.t. C(x) =y

N N N
L P v
Y1 Y2 Y3

AN

ee{1,2,3

i

Check consistency

11/15

Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

/KBoo Protocol

e

Input: xs.t. C(x) =y

o —

ee{1,2,3

AN

Soundness error:
J N

11/15

Linear Decomposition:

N= number of gates in the boolean circuit C

12/15

Linear Decomposition:

N= number of gates in the boolean circuit C
o Share(x) = (w9, w3, w3) with wl®wlow]=x

o Rec(y1,y2,¥3) =y1©y2Dys3

12 /15

Linear Decomposition:

N= number of gates in the boolean circuit C
o Share(x) = (w9, w3, w3) with wl®wlow]=x
* Rec(y1,y2,y3) =y1 @ y2Dy3

olc

J-th
gate

12 /15

Linear Decomposition:

N= number of gates in the boolean circuit C
o Share(x) = (w9, w3, w3) with wl®wlow]=x

o Rec(y1,y2,¥3) =y1©y2Dys3

olc

XOR gate j-th
f(J)(w wl)=wiowb gate
l

e=1273

12 /15

Linear Decomposition:

N= number of gates in the boolean circuit C
o Share(x) = (w9, w3, w3) with wl®wlow]=x
* Rec(y1,y2,y3) =y1 @ y2Dy3

olc

XOR gate j-th
f(J)(w w) —w?® WS gate

AND gate
D (w2, wh, w2,y wh) = wawd @ w2, wh & wiwd,) 6,

e=1273

12 /15

Experiments for ZKBoo

SHA-1 SHA-256
Serial ‘ Paral. | Serial ‘ Paral.
Prover (ms) 31.73 | 12.73 | 54.63 | 15.95
Verifier (ms) 2285 | 4.39 | 67.74 | 13.20
| Proof size (KB) | 44418 | 83591 |

Soundness error: 2780
(137 repetitions of ZKBoo with soundness 2/3)

SHA-1 — 11680 AND gates
SHA-256 — 25344 AND gates

Implementation available at https://github.com/Sobuno/ZKBoo

13 /15

Experiments for ZKBoo

SHA-1 SHA-256
Serial ‘ Paral. | Serial ‘ Paral.
Prover (ms) 31.73 | 12.73 | 54.63 | 15.95
Verifier (ms) 2285 | 4.39 | 67.74 | 13.20
| Proof size (KB) | 44418 | 83591 |

Soundness error: 2780
(137 repetitions of ZKBoo with soundness 2/3)

SHA-1 — 11680 AND gates
SHA-256 — 25344 AND gates

Implementation available at https://github.com/Sobuno/ZKBoo

13/15

Recap:

ZKBoo: a nearly practical ZK protocol that

14 /15

Recap:

ZKBoo: a nearly practical ZK protocol that

e is non-interactive!

14 /15

Recap:

ZKBoo: a nearly practical ZK protocol that

e is non-interactive!
e is implemented for SHA-1 and SHA-256!

14 /15

Recap:

ZKBoo: a nearly practical ZK protocol that

e is non-interactive!
e is implemented for SHA-1 and SHA-256!
e has proving time much smaller than SNARGs !

14 /15

Recap:

ZKBoo: a nearly practical ZK protocol that

e is non-interactive!
is implemented for SHA-1 and SHA-256!
has proving time much smaller than SNARGs !

e ... has a really cute namel!!! :)

14 /15

What next?

ZKBoo can work for any circuit C !
(both arithmetic or boolean)

15/15

What next?

ZKBoo can work for any circuit C !
(both arithmetic or boolean)

e implement general-purpose ZKBoo;

15/15

What next?

ZKBoo can work for any circuit C !
(both arithmetic or boolean)

e implement general-purpose ZKBoo;

e consider another specific circuit (eg C=AES) and define new ad-hoc
decomposition;

15/15

What next?

ZKBoo can work for any circuit C !
(both arithmetic or boolean)

e implement general-purpose ZKBoo;

e consider another specific circuit (eg C=AES) and define new ad-hoc
decomposition;

Thanks for the attention! Questions?

15/15

