

ZKBoo: Faster Zero-Knowledge for Boolean Circuits

Irene Giacomelli, Jesper Madsen and Claudio Orlandi

Usenix Security Symposium 2016

Zero-Knowledge (ZK) Arguments

In theory...

ZK protocols have **many applications** in designing several crypto primitives!

ZK protocols have **many applications** in designing several crypto primitives!

• user identification protocols

- verifiable delegation of computation
- electronic payment system

Real-world applications

need practically efficient solutions for proving general statement

Real-world applications

need practically efficient solutions for proving general statement

 SNARGs (Succinct Non-interactive ARGuments) [Gro10, Lip12, GGPR13, Lip 13, DFGK14, GRo 15] [PGHR13, BCGTV13, BCTV14, CTV15, CFH⁺15]

• ZKGC (*zero-knowledge from garbled circuits*) [Jawurek-Kerschbaum-Orlandi 2013]

Real-world applications

need practically efficient solutions for proving general statement

- SNARGs (Succinct Non-interactive ARGuments) [Gro10, Lip12, GGPR13, Lip 13, DFGK14, GRo 15] [PGHR13, BCGTV13, BCTV14, CTV15, CFH⁺15]
 - proofs of small size, fast in verifying :-)
 - large keys needed, slower in proving :-(
- ZKGC (*zero-knowledge from garbled circuits*) [Jawurek-Kerschbaum-Orlandi 2013]

Real-world applications

need practically efficient solutions for proving general statement

- SNARGs (Succinct Non-interactive ARGuments) [Gro10, Lip12, GGPR13, Lip 13, DFGK14, GRo 15] [PGHR13, BCGTV13, BCTV14, CTV15, CFH⁺15]
 - proofs of small size, fast in verifying :-)
 - large keys needed, slower in proving :-(
- ZKGC (*zero-knowledge from garbled circuits*) [Jawurek-Kerschbaum-Orlandi 2013]
 - proving time is decreased :-)
 - interaction is required :-(

Real-world applications

need practically efficient solutions for proving general statement

New!

• **ZKBoo** (Zero-Knowledge for Boolean circuits)

- can be made non interactive :-)
- fast in proving and verifying :-)
- the size of the proof grows linearly with the circuit size :-

Comparison for C = SHA-1

"I know **x** such that $\mathbf{y} = SHA-1(\mathbf{x})$ "

	Preproc. (ms)	Prover (ms)	Verifier (ms)	Proof size (B)
ZKBoo	0	13	5	454840
ZKGC*	0	> 19	> 25	186880
Pinocchio**	9754	12059	8	288

* estimates for the proof size and lower-bounds for the runtime

**[Parno-Howell-Gentry-Raykova 2013]

In the rest of this talk:

1 Description of the ZKBoo protocol

2 Implementation results

Public data: $C: \{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

Complete: if Alice and Bob honest and $C(\mathbf{x}) = \mathbf{y}$, Pr[Bob outputs Y] = 1

Public data: $C: \{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

Soundness: from ≥ 2 accepting conversations $(\mathbf{a}, \mathbf{e}_i, \mathbf{z}_i)$ with $\mathbf{e}_i \neq \mathbf{e}_j$ we can efficiently compute \mathbf{x}' s.t. $C(\mathbf{x}') = \mathbf{y}$

Public data: $C: \{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

The protocol has **soundness error** ϵ : if Alice is cheating, then Pr[Bob outputs Y] $\leq \epsilon$

Public data: $C: \{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

(Honest-Verifier) **ZK property**: the distribution of (a, e, z) does not reveal info on x

Public data: $C: \{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

It can be made non-interactive! (Fiat-Shamir heuristic)

Σ -Protocol Recap

а

е

Ζ

Y / N

- Soundness error: if Alice cheats, $\Pr[Bob \text{ says } Y] \le \epsilon$
- ZK property: no info on x!
- 3 rounds, public coin \rightarrow non-interactive

Related work:

IKOS Construction (or "MPC-in-the-head") [Ishai-Kushilevitz-Ostrovsky-Sahai 2007]

Related work:

IKOS Construction (or "MPC-in-the-head") [Ishai-Kushilevitz-Ostrovsky-Sahai 2007]

- a Σ-protocol with error 2/3 (not implemented!)
- ZK protocol with asymptotically good complexity;

<u>Goal</u>: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

<u>Goal</u>: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

<u>Goal</u>: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

<u>Goal</u>: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

<u>Goal</u>: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

Goal: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

Goal: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

Share, Rec and $\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,...,N}$

• correctness: $\mathbf{y} = C(\mathbf{x})$

Goal: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

- correctness: $\mathbf{y} = C(\mathbf{x})$
- 2-privacy: ∀ e,∀j (w^j_e, w_{je+1}, y_{e+2}) doesn't reveal info on x

N= number of gates in the boolean circuit C

N= number of gates in the boolean circuit C

• Share(x) = (w_1^0, w_2^0, w_3^0) with $w_1^0 \oplus w_2^0 \oplus w_3^0 = x$

• $\mathsf{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) = \mathbf{y}_1 \oplus \mathbf{y}_2 \oplus \mathbf{y}_3$

N= number of gates in the boolean circuit C

• Share(x) = (w_1^0, w_2^0, w_3^0) with $w_1^0 \oplus w_2^0 \oplus w_3^0 = x$

- $\mathsf{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) = \mathbf{y}_1 \oplus \mathbf{y}_2 \oplus \mathbf{y}_3$
- $\{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}$

N= number of gates in the boolean circuit C

• Share(x) = (w_1^0, w_2^0, w_3^0) with $w_1^0 \oplus w_2^0 \oplus w_3^0 = x$

- $\mathsf{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) = \mathbf{y}_1 \oplus \mathbf{y}_2 \oplus \mathbf{y}_3$
- $\{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}$

XOR gate $f_e^{(j)}(\mathbf{w}_e^a, \mathbf{w}_e^b) = \mathbf{w}_e^a \oplus \mathbf{w}_e^b$

$$e = 1, 2, 3$$

N= number of gates in the boolean circuit C

• Share(x) = (w_1^0, w_2^0, w_3^0) with $w_1^0 \oplus w_2^0 \oplus w_3^0 = x$

- $\mathsf{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) = \mathbf{y}_1 \oplus \mathbf{y}_2 \oplus \mathbf{y}_3$
- $\{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}$

XOR gate $f_e^{(j)}(\mathbf{w}_e^a, \mathbf{w}_e^b) = \mathbf{w}_e^a \oplus \mathbf{w}_e^b$

AND gate $f_e^{(j)}(\mathbf{w}_e^a, \mathbf{w}_e^b, \mathbf{w}_{e+1}^a, \mathbf{w}_{e+1}^b) = \mathbf{w}_e^a \mathbf{w}_e^b \oplus \mathbf{w}_{e+1}^a \mathbf{w}_e^b \oplus \mathbf{w}_e^a \mathbf{w}_{e+1}^b \oplus \mathbf{r}_j$

e = 1, 2, 3

Experiments for ZKBoo

	SHA-1		SHA-256	
	Serial	Paral.	Serial	Paral.
Prover (ms)	31.73	12.73	54.63	15.95
Verifier (ms)	22.85	4.39	67.74	13.20
Proof size (KB)	444.18		835.91	

Soundness error: 2^{-80} (137 repetitions of ZKBoo with soundness 2/3)

 $\mbox{SHA-1} \rightarrow 11680$ AND gates $\mbox{SHA-256} \rightarrow 25344$ AND gates

Implementation available at https://github.com/Sobuno/ZKBoo

Experiments for ZKBoo

	SHA-1		SHA-256	
	Serial	Paral.	Serial	Paral.
Prover (ms)	31.73	12.73	54.63	15.95
Verifier (ms)	22.85	4.39	67.74	13.20
Proof size (KB)	444.18		835.91	

Soundness error: 2^{-80} (137 repetitions of ZKBoo with soundness 2/3)

 $\mbox{SHA-1} \rightarrow 11680$ AND gates $\mbox{SHA-256} \rightarrow 25344$ AND gates

Implementation available at https://github.com/Sobuno/ZKBoo

$\ensuremath{\textbf{ZKBoo}}\xspace$: a nearly practical $\ensuremath{\textbf{ZK}}\xspace$ protocol that

 $\ensuremath{\textbf{ZKBoo}}\xspace$: a nearly practical $\ensuremath{\textbf{ZK}}\xspace$ protocol that

• is non-interactive!

 $\ensuremath{\textbf{ZKBoo}}\xspace$: a nearly practical $\ensuremath{\textbf{ZK}}\xspace$ protocol that

- is non-interactive!
- is implemented for SHA-1 and SHA-256!

ZKBoo: a nearly practical ZK protocol that

- is non-interactive!
- is implemented for SHA-1 and SHA-256!
- has proving time much smaller than SNARGs !

ZKBoo: a nearly practical ZK protocol that

- is non-interactive!
- is implemented for SHA-1 and SHA-256!
- has proving time much smaller than SNARGs !
- ... has a really cute name!!! :)

ZKBoo can work for <u>any</u> circuit C ! (both arithmetic or boolean)

ZKBoo can work for <u>any</u> circuit C ! (both arithmetic or boolean)

• implement general-purpose ZKBoo;

ZKBoo can work for <u>any</u> circuit C ! (both arithmetic or boolean)

- implement general-purpose ZKBoo;
- consider another specific circuit (eg C=AES) and define new ad-hoc decomposition;

ZKBoo can work for <u>any</u> circuit C ! (both arithmetic or boolean)

- implement general-purpose ZKBoo;
- consider another specific circuit (eg C=AES) and define new ad-hoc decomposition;

Thanks for the attention! Questions?