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B Information Hiding Technique

* Information Hiding Technique
— Hiding an important area at a random location

— Has no pointers in memory referring to it —
— Is as small as possible [stack]
— Normal accesses are done through ~ ~

an offset from a dedicated register

[heap]
executables
libraries

%$gs:1024

* Itis widely used in [} oxsememame |
— Code Pointer Integrity > Hidden ;Eé\f"]wj _ ~
— Control Flow Integrity 1\\ 1
— Code (Re-)Randomization T

Address Space



B Attacks against Information Hiding
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Avoid Crash

e CROP attack [NDss"16]

Using the exception handling mechanism to avoid crash.

* Clone-probing attack [5&P4]

Probing the child processes to avoid crash the parent process.



B Attacks against Information Hiding
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Reduce Entropy

* Attack via spraying safe areas [SECURITY16]
* Spraying thread-local safe areas via spraying threads.



B Attacks against Information Hiding
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Reduce Entropy

* Attack via spraying safe areas [SECURITY16]

* Spraying thread-local safe areas via spraying threads.

* Attack via filling memory holes [SECURITY16]
 Allocating memory to occupy the unmapped areas.



B Attacks against Information Hiding

* Attack against Page Table Structure[NDS5"7]
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B Threat Model

* We consider an IH-based defense that protects a vulnerable application
against code reuse attacks.

— Web servers or browsers.

* The design of this IH-based defense is not flawed:

— Before launching code reuse attacks, attackers must circumvent the defense by
revealing the safe area.

* Attackers’ abilities
— Read and write arbitrary memory locations;
— Allocate and free arbitrary memory areas;
— Create any number of threads;



B Attack Vectors Summary of Attacks

Vector-1 Gathering memory layout information to help to locate safe areas

Vector-2 Creating opportunities to probe without crashing the system

Vector-3 Reducing the entropy of the randomized safe area locations

Vector-4 Monitoring page-table access patterns using cache side channels



B outline

* Our design



SafeHidden

B Our Design

« SafeHidden is proposed to block these attack vectors
— Mediating all types of probes that may leak the locations
— Randomizing safe areas upon detecting suspicious probes
— Isolating the thread-local safe areas

— Raising security alarms when illegal probes are detected



B Block Attack Vector-1

* Vector-1 Gathering memory layout information to help to locate safe areas

Q interception Points

4.& memory management system calls mmap, mprotect, brk,...

Syscalls that could return EFAULT read, write, access, send, ...

[heap] g
cloning memory space clone, fork, vfork
executables ‘Q & ysp ) 85 W
libraries memory access instructions page fault exception

- Hidden a
But persistent attacks ~ ~

could always succeed.  address Space



B Block Attack Vector-2

* Vector-2 Creating opportunities to probe safe areas without crashing the
system

//// [stack] [stack]

[heap] Leave Traps [heap] ﬁ&

executables |@ executables
libraries libraries

2 Hidden a
But persistent attacks  ~ ~

could always succeed. agdress Space Address Space



B Block Attack Vector-3

* Vector-3 Reducing the entropy of the randomized safe area locations

* SafeHidden prevents unlimited shrink of unmapped areas and
unrestricted growth of safe areas.

— The maximum size of the mapped area is set to 64 TB.

— Using thread-private memory mechanism to isolate thread-local safe areas.
— The entropy will not be reduced by thread spraying.
— Using hardware-assisted virtualization techniques.
— Each thread will be assigned a thread-private EPT (Extended Page Table).

More Details are in Our Paper



Bl Block Attack Vector-4

* Vector-4 Monitoring page-table access patterns using cache side
channels

 Observation
— It needs hundreds of Prime+Probe or Evict+Time tests.

— Itis also imperative that the addresses of the PTEs corresponding to this
memory area are not changed.

—>The cache entries mapped by these PTEs are not changed.

 Solution: Re-randomization!



Bl Block Attack Vector-4

* SafeHidden also monitors legal accesses to the safe area that may be
triggered by the attacker on purpose.

* Once such alegal access is detected, SafeHidden will randomize the
location of the safe area.

* But, how to detect this legal access from the attacker?



Bl Block Attack Vector-4

* The key step of cache side-channel attack against page table is to force a
page table walk.

Core

We could intercept
Ea TLB misses !!!
©PT

Virt Addr -
Fill
IPhys Addr

—_— But, how to only intercept the

L2 L1 Data ’

t TLB miss occurred in safe areas?
L3 (Shared)

k3

DRAM

Image from https://www.vusec.net/projects/anc/



B Convert TLB Miss to Page Fault Exception

66 55 44

32 21 87

N Page Frame Number
I d

X gnore ey + Protection Bits

PTE

* When the reserved bit is set, a page fault exception will be triggered

during the page table walk.

o SafeHidden sets the reserved bit in all of the PTEs for the safe areas to

detect the TLB misses.

— When a TLB miss occurs, it is trapped into the pf handler.



B Flowchart of Page Fault Handler

More Details are in Our Paper
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Two Problems

@ How to preload PTE into
TLB under the KPTI technique?

@) It could cause many false
alarm TLB misses at new
location.
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* System Implementation



B Architecture Overview

« SafeHidden is designed as a loadable kernel module.
— No need to modify the existing defenses.
— No need to re-compile the OS kernel.

* We integrated a thin hypervisor for a non-virtualized OS.
* It virtualizes the running OS as the guest without rebooting the system.
* The other components, called GuestKM, runs in guest kernel.



B Architecture Overview
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l Experiment Setup

* On X86_ 64/Linux Platform
— 3.4GHZ Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB RAM.
— Ubuntu 18.04 (Kernel 4.20.3 with KPTI enabled by default)

« SafeHidden protects two defenses that using IH.
— Shadow stack and O-CFl.
— The %gs is used to point to the safe area.

* Benchmarks

— CPU-intensive benchmarks: SPEC CPU2006 and Multi-threaded Parsec-2.1.
— Network 1/O: Multiple processes Nginx and Multi-threaded Apache.
— Disk 1/0: Bonnie++ benchmark tool.



B Performance Evaluation

 CPU-intensive benchmarks
— SPEC CPU2006 benchmark with ref input
* Incurred 2.75% and 2.76% when protecting O-CFl and Shadow Stack.
— Multi-threaded Parsec-2.1 benchmark with native input
* Incurred 5.78% and 6.44% when protecting O-CFl and Shadow Stack.
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B Performance Evaluation

 Network I/O benchmarks

— Apache is configured to work mpm-worker mode (8 threads).
* Incurred 12.07% and 12.18% when protecting O-CFl and Shadow Stack.

— Nginx is configured to work with 4 worker processes.
* Incurred 5.35% and 5.51% when protecting O-CFl and Shadow Stack.
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B Performance Evaluation

* Disk I/O benchmarks

— Bonnie++ benchmark tool (read and write tests)
* Incurred 1.76% and 2.18% when protecting O-CFl and Shadow Stack.
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B Conclusion

» SafeHidden proposes the re-randomization based IH technique against
all known attacks.

» SafeHidden introduces the use of thread-private memory to isolate
thread-local safe areas.

— Using hardware-assisted extended page tables.

* It devises a new technique to detect TLB misses.

— Itis the key trait of cache side-channel attacks against the page tables.
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B Security Analysis
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Figure 3: The probability of being captured by SafeHidden within
N probes (a) and the probability of locating the safe areas within N
probes successfully (b).



B When to perform randomization?

[stack]
hiladEn syscalls that could return EFAULT  read, write, access, send, ...
cloning memory space clone, fork, vfork
T 7 memory access instructions page fault exception
ex:::taapgles Other Area (OA) Safe Area (SA) UnmaFS:)d Area
libraries
—
~ ~ SA UA TA OA
memory management system calls Alarm Rand Alarm —
i syscalls that could return EFAULT Alarm Rand Alarm —
LTI cloning memory space Rand Rand Rand Rand
- memory access instructions — Rand Alarm —

Address Space



B Thread-private Memory

* Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.

Thread0 Threadl
Virtual Memory Virtual Memory
[ Guest |
Page Table
-: .

Sl EPTP EPTP
Guest Core 0 Guest Physical Memory Core1
Host

EPTO EPT1

Host Physical Memory



B Thread-private Memory

* Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.
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B How to Integrate SafeHidden with KPTI?

* KPTI splits the page table for each process into a
user-mode page table and a kernel-mode page table.

— PCID is used to avoid the TLB flush during context-switch.

Kernel Mode User Mode

TLB
PC -
R3] = 1 PCID VPN->PFN
kPCID | oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->ox...
User Space User Space
uPCID [
o Rn]-oN ¥
: PGD PGD

Kernel User




B How to Integrate SafeHidden with KPTI?

* The TLB entry loaded in kernel-mode page table with
kPCID cannot be used by user-mode code!

Kernel Mode User Mode

TLB
CR3[11] =1 PCID VPN->PFN

kPCID oxsafehidden->ox...

Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area TLBPC . kPCID | oxsafehidden->o0x...

miss
User Space User Space kPCID oxsafearea ->Ox...
uPCID |
e Ri] o
: PCD PGD

Kernel User




B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

Kernel Mode User Mode

TLB
PC -
R3] = 1 PCID VPN->PFN
kPCID | oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->ox...
User Space User Space
uPCID [
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Kernel User




B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.
— But some pages related to this operation are also loaded.

Kernel Mode User Mode
TLB
PC -
CR3[11] = 1 PCID VPN->PFN
kPCID oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID oxsafehidden->ox...
Safe Area Safe Area TL;(IZT kPCID | oxsafehidden->0x...
It
User Space Usar Spees uPCID | oxsafearea ->Ox...
l€— UuPCID [—>
R3]
¢ PGD PGD
Kernel User




B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

— But some pages related to this operation are also loaded.

Kernel Mode User Mode
TLB
PC PCID VPN->PFN

kPCID oxsafehidden->ox...

Kernel Space Kernel Space
kPCID kPCID oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->0x...
User Space Usar Spees uPCID | oxsafearea ->Ox...

€— UuPCID >

HRCIBD—xsafehidder>oiar——
— 7
: PGD PGD
Kernel User

To avoid these TLB entries to be exploited by the Meltdown attack,
we flush them by using invcpid instructions



B Reloading TLB Entries after Randomization

 SafeHidden uses the Intel TSX to test which PTEs of
safe areas are loaded in the TLB.

* And then loading them into TLB after randomization
to avoid many false alarms of TLB misses.

When MMU walk a poisoned
PTE, it will trigger #PF, and
then captured by Intel TSX.

if _xbegin() == XBEGIN_STARTED:

access a page in safe area
_xend() j Abort if it is

else not in TLB
fallback routine




B Information Hiding is Not Secure Any More

* Recent attacks have made it vulnerable again.
— Via breaking theassumptions of this technique !!!

* Rethink the security assumptions of IH :

1. Failed guesses could crash the program = Avoid crash
2. Safe areais designed very small (high entropy) = Reduce entropy

3. Normal accesses will not leak the location = Leak page table structure



