
SafeHidden: An Efficient and Secure Information
Hiding Technique Using Re-randomization

Zhe Wang1, Chenggang Wu1, Yinqian Zhang2, Bowen Tang1, Pen-Chung Yew3,
Mengyao Xie1, Yuanming Lai1, Yan Kang1, Yueqiang Cheng4, and Zhiping Shi5

1Institute of Computing Technology, Chinese Academy of Sciences,
2The Ohio State University,
3University of Minnesota at Twin-Cities,
4Baidu USA,
5The Capital Normal University

• Information Hiding Technique
– Hiding an important area at a random location
– Has no pointers in memory referring to it
– Is as small as possible
– Normal accesses are done through

an offset from a dedicated register

• It is widely used in
– Code Pointer Integrity
– Control Flow Integrity
– Code (Re-)Randomization

Information Hiding Technique

Address Space

Hidden

libraries
executables

[heap]

[stack]

Attacks against Information Hiding

Safe
Area

0 128T

Virtual Address

%gs:0x0
0x1fafe7fbf000

main library stack

Crash

• CROP attack [NDSS’16]

• Using the exception handling mechanism to avoid crash.

• Clone-probing attack [S&P’14]

• Probing the child processes to avoid crash the parent process.

Crash Bingo

Avoid Crash

Attacks against Information Hiding

Safe
Area

0 128T

Virtual Address

%gs:0x0
0x1fafe7fbf000

main library stack

Bingo

Reduce Entropy

Safe
Area

Safe
Area

Safe
Area

Safe
Area

Safe
Area

• Attack via spraying safe areas [SECURITY’16]

• Spraying thread-local safe areas via spraying threads.

Safe
Area

0 128T

Virtual Address

%gs:0x0
0x1fafe7fbf000

main library stack

• Attack via spraying safe areas [SECURITY’16]

• Spraying thread-local safe areas via spraying threads.

• Attack via filling memory holes [SECURITY’16]

• Allocating memory to occupy the unmapped areas.

Bingo

Reduce Entropy

Attacks against Information Hiding

Safe
Area

0 128T

Virtual Address

Physical Address

0 4G

main library stack

• Attack against Page Table Structure[NDSS’17]

= 0x???????????

PRIME+PROBE

%gs:0x00x1fafe7fbf000 =

Leak
Page
Table

Image from https://www.vusec.net/projects/xlate/

Attacks against Information Hiding

• Threat Model

• Attack vectors

• Our design

• System Implementation

• Evaluation

Outline

• We consider an IH-based defense that protects a vulnerable application
against code reuse attacks.
– Web servers or browsers.

• The design of this IH-based defense is not flawed:
– Before launching code reuse attacks, attackers must circumvent the defense by

revealing the safe area.

• Attackers’ abilities
– Read and write arbitrary memory locations;
– Allocate and free arbitrary memory areas;
– Create any number of threads;

Threat Model

• Vector-1 Gathering memory layout information to help to locate safe areas

• Vector-2 Creating opportunities to probe without crashing the system

• Vector-3 Reducing the entropy of the randomized safe area locations

• Vector-4 Monitoring page-table access patterns using cache side channels

Attack Vectors —— Summary of Attacks

• Threat Model

• Attack vectors

• Our design

• System Implementation

• Evaluation

Outline

• SafeHidden is proposed to block these attack vectors

– Mediating all types of probes that may leak the locations

– Randomizing safe areas upon detecting suspicious probes

– Isolating the thread-local safe areas

– Raising security alarms when illegal probes are detected

Our Design —— SafeHidden

• Vector-1 Gathering memory layout information to help to locate safe areas

Address Space

libraries
executables

[heap]

[stack]

Hidden

But persistent attacks
could always succeed.

Block Attack Vector-1

Events Interception Points
memory management system calls mmap, mprotect, brk,…

Syscalls that could return EFAULT read, write, access, send, ...

cloning memory space clone, fork, vfork

memory access instructions page fault exception

• Vector-2 Creating opportunities to probe safe areas without crashing the
system

Address Space

libraries
executables

[heap]

[stack]

Hidden

Leave Traps

But persistent attacks
could always succeed. Address Space

libraries
executables

[heap]

[stack]

Hidden

Block Attack Vector-2

• Vector-3 Reducing the entropy of the randomized safe area locations

• SafeHidden prevents unlimited shrink of unmapped areas and
unrestricted growth of safe areas.

�The maximum size of the mapped area is set to 64 TB.

�Using thread-private memory mechanism to isolate thread-local safe areas.
� The entropy will not be reduced by thread spraying.
� Using hardware-assisted virtualization techniques.
� Each thread will be assigned a thread-private EPT (Extended Page Table).

Block Attack Vector-3

More Details are in Our Paper

• Vector-4 Monitoring page-table access patterns using cache side
channels

• Observation
� It needs hundreds of Prime+Probe or Evict+Time tests.
� It is also imperative that the addresses of the PTEs corresponding to this

memory area are not changed.
àThe cache entries mapped by these PTEs are not changed.

• Solution: Re-randomization!

Block Attack Vector-4

• SafeHidden also monitors legal accesses to the safe area that may be
triggered by the attacker on purpose.

• Once such a legal access is detected, SafeHidden will randomize the
location of the safe area.

• But, how to detect this legal access from the attacker?

Block Attack Vector-4

• The key step of cache side-channel attack against page table is to force a
page table walk.

We could intercept
TLB misses !!!

But, how to only intercept the
TLB miss occurred in safe areas?

Block Attack Vector-4

Image from https://www.vusec.net/projects/anc/

• When the reserved bit is set, a page fault exception will be triggered
during the page table walk.

• SafeHidden sets the reserved bit in all of the PTEs for the safe areas to
detect the TLB misses.
�When a TLB miss occurs, it is trapped into the pf handler.

Convert TLB Miss to Page Fault Exception

� It could cause many false
alarm TLB misses at new
location.

� How to preload PTE into
TLB under the KPTI technique?

Virtual Address

Physical Address

TLB
Lookup

TLB
Hit?

Hardware Page
Table Walk

RSVD
==0?

Original Page
Fault Handler

Return from Trap
Retry will hit in TLB

Y

N Y

Trap Handler:
Instrumented #PF

N

1 Clean All
Reserved Bits

2

Randomization3

Preload the PTE
into TLB

4

Set Reserved
Bits in All of PTEs

5

Relocate to the
New Address

6

Trap
Possible

Two Problems

Flowchart of Page Fault Handler
More Details are in Our Paper

• Threat Model

• Attack vectors

• Our design

• System Implementation

• Evaluation

Outline

• SafeHidden is designed as a loadable kernel module.
�No need to modify the existing defenses.
�No need to re-compile the OS kernel.

• We integrated a thin hypervisor for a non-virtualized OS.
• It virtualizes the running OS as the guest without rebooting the system.
• The other components, called GuestKM, runs in guest kernel.

Architecture Overview

Hardware Hypervisor

OS Kernel

Protected APP’s
thread0

Other
Applications

Protected APP’s
thread1

Process
Sched

Syscall Interceptor

Randomizer

#0

#511
. . .
. . .

Page Tables

#0

#511
. . .
. . .

Extended page tables

EPT
Violation
Handler

Hypercall Handlers

Kernel Module

#PF Interceptor

Checker

vmcall

Linux
Notifier

SafeHidden

Function
Module

Switch
EPT

Sync
EPT

Intercept
Events

Inject
Interrupt

Architecture Overview

• Threat Model

• Attack vectors

• Our design

• System Implementation

• Evaluation

Outline

• On X86_64/Linux Platform
– 3.4GHZ Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB RAM.
– Ubuntu 18.04 (Kernel 4.20.3 with KPTI enabled by default)

• SafeHidden protects two defenses that using IH.
– Shadow stack and O-CFI.
– The %gs is used to point to the safe area.

• Benchmarks
– CPU-intensive benchmarks: SPEC CPU2006 and Multi-threaded Parsec-2.1.

– Network I/O: Multiple processes Nginx and Multi-threaded Apache.
– Disk I/O: Bonnie++ benchmark tool.

Experiment Setup

• CPU-intensive benchmarks
– SPEC CPU2006 benchmark with ref input

• Incurred 2.75% and 2.76% when protecting O-CFI and Shadow Stack.

– Multi-threaded Parsec-2.1 benchmark with native input
• Incurred 5.78% and 6.44% when protecting O-CFI and Shadow Stack.

Performance Evaluation

• Network I/O benchmarks
– Apache is configured to work mpm-worker mode (8 threads).

• Incurred 12.07% and 12.18% when protecting O-CFI and Shadow Stack.

– Nginx is configured to work with 4 worker processes.
• Incurred 5.35% and 5.51% when protecting O-CFI and Shadow Stack.

Performance Evaluation

• Disk I/O benchmarks
– Bonnie++ benchmark tool (read and write tests)

• Incurred 1.76% and 2.18% when protecting O-CFI and Shadow Stack.

Performance Evaluation

• SafeHidden proposes the re-randomization based IH technique against
all known attacks.

• SafeHidden introduces the use of thread-private memory to isolate
thread-local safe areas.
– Using hardware-assisted extended page tables.

• It devises a new technique to detect TLB misses.
– It is the key trait of cache side-channel attacks against the page tables.

Conclusion

Q & A
wangzhe12@ict.ac.cn

Security Analysis

When to perform randomization?

Events
Responses in SafeHidden

SA UA TA OA

memory management system calls Alarm Rand Alarm —

syscalls that could return EFAULT Alarm Rand Alarm —

cloning memory space Rand Rand Rand Rand

memory access instructions — Rand Alarm —

Other Area (OA) Trap Area (TA) Safe Area (SA) Unmapped Area
(UA)

Address Space

libraries
executables

Hidden

Hidden

[heap]

[stack]

Events Interception Points
memory management system calls mmap, munmap, mremap, mprotect, brk

syscalls that could return EFAULT read, write, access, send, ...

cloning memory space clone, fork, vfork

memory access instructions page fault exception

Thread-private Memory

• Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.

Thread0
Virtual Memory

…

EPT0

Thread1
Virtual Memory

…

Guest
Page Table

Guest

Host

Guest Physical Memory

Host Physical Memory

…

EPT1

EPTP
CR3

Core 1
EPTP
CR3

Core 0

Thread-private Memory

Thread0
Virtual Memory

…

EPT0

Thread1
Virtual Memory

P
0

…

Guest
Page Table

P
3

P
5

P
6

Guest

Host

Guest Physical Memory

Host Physical Memory

…

EPT1

P
1

P
2

Thread0’s safe area�

Thread1’s safe area�

P
0

P
2

P
1

P
3

EPTP
CR3

Core 1
EPTP
CR3

Core 0

• Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.

How to Integrate SafeHidden with KPTI?

• KPTI splits the page table for each process into a
user-mode page table and a kernel-mode page table.
– PCID is used to avoid the TLB flush during context-switch.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

…
…

…
…

kPCID

uPCID

CR3[11] = 1

physical
memory

SafeHidden

TLB
PCID VPN->PFN

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…Safe Area Safe Area

PC

How to Integrate SafeHidden with KPTI?

• The TLB entry loaded in kernel-mode page table with
kPCID cannot be used by user-mode code!

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

…
…

…
…

kPCID

uPCID

CR3[11] = 1

physical
memory

SafeHidden

TLB
PCID VPN->PFN

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafearea ->0x…

Safe Area Safe Area

TLB miss

PC

How to Integrate SafeHidden with KPTI?

• SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

…
…

…
…

kPCID

uPCID

CR3[11] = 1

physical
memory

SafeHidden

TLB
PCID VPN->PFN

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…Safe Area Safe Area

PC

How to Integrate SafeHidden with KPTI?

• SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

– But some pages related to this operation are also loaded.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

…
…

…
…

kPCID

uPCID

CR3[11] = 1

physical
memory

SafeHidden

TLB
PCID VPN->PFN

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

uPCID 0xsafearea ->0x…

Safe Area Safe Area

PC

TLB hit

PC

How to Integrate SafeHidden with KPTI?

• SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

– But some pages related to this operation are also loaded.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

…
…

…
…

kPCID

uPCID

CR3[11] = 1

physical
memory

SafeHidden

TLB
PCID VPN->PFN

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

kPCID 0xsafehidden->0x…

uPCID 0xsafearea ->0x…

uPCID 0xsafehidden->0x…

Safe Area Safe Area

PC

To avoid these TLB entries to be exploited by the Meltdown attack,
we flush them by using invcpid instructions

Reloading TLB Entries after Randomization

• SafeHidden uses the Intel TSX to test which PTEs of

safe areas are loaded in the TLB.

• And then loading them into TLB after randomization

to avoid many false alarms of TLB misses.

if _xbegin() == _XBEGIN_STARTED:
access a page in safe area
_xend()

else
fallback routine

Abort if it is

not in TLB

When MMU walk a poisoned

PTE, it will trigger #PF, and
then captured by Intel TSX.

• Recent attacks have made it vulnerable again.
– Via breaking theassumptions of this technique !!!

• Rethink the security assumptions of IH :

1. Failed guesses could crash the program à Avoid crash

2. Safe area is designed very small (high entropy) à Reduce entropy

3. Normal accesses will not leak the location à Leak page table structure

Information Hiding is Not Secure Any More

