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• Information Hiding Technique
– Hiding an important area at a random location
– Has no pointers in memory referring to it
– Is as small as possible
– Normal accesses are done through 

an offset from a dedicated register

• It is widely used in
– Code Pointer Integrity
– Control Flow Integrity
– Code (Re-)Randomization
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Attacks against Information Hiding
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• CROP attack [NDSS’16]

• Using the exception handling mechanism to avoid crash.

• Clone-probing attack [S&P’14]

• Probing the child processes to avoid crash the parent process. 
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Attacks against Information Hiding

Safe 
Area

0 128T

Virtual Address

%gs:0x0
0x1fafe7fbf000

main library stack

Bingo

Reduce Entropy

Safe 
Area

Safe 
Area

Safe 
Area

Safe 
Area

Safe 
Area

• Attack via spraying safe areas [SECURITY’16]

• Spraying thread-local safe areas via spraying threads.
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• Attack via spraying safe areas [SECURITY’16]

• Spraying thread-local safe areas via spraying threads.

• Attack via filling memory holes [SECURITY’16]

• Allocating memory to occupy the unmapped areas. 
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• Attack against Page Table Structure[NDSS’17]
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• We consider an IH-based defense that protects a vulnerable application 
against code reuse attacks.
– Web servers or browsers.

• The design of this IH-based defense is not flawed:
– Before launching code reuse attacks, attackers must circumvent the defense by 

revealing the safe area.

• Attackers’ abilities
– Read and write arbitrary memory locations;
– Allocate and free arbitrary memory areas;
– Create any number of threads;

Threat Model



• Vector-1 Gathering memory layout information to help to locate safe areas

• Vector-2 Creating opportunities to probe without crashing the system

• Vector-3 Reducing the entropy of the randomized safe area locations

• Vector-4 Monitoring page-table access patterns using cache side channels

Attack Vectors —— Summary of Attacks
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• SafeHidden is proposed to block these attack vectors

– Mediating all types of probes that may leak the locations

– Randomizing safe areas upon detecting suspicious probes 

– Isolating the thread-local safe areas

– Raising security alarms when illegal probes are detected

Our Design —— SafeHidden



• Vector-1 Gathering memory layout information to help to locate safe areas
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• Vector-2 Creating opportunities to probe safe areas without crashing the 
system

Address Space

libraries
executables

[heap]

[stack]

Hidden

Leave Traps

But persistent attacks
could always succeed. Address Space

libraries
executables

[heap]

[stack]

Hidden

Block Attack Vector-2



• Vector-3 Reducing the entropy of the randomized safe area locations

• SafeHidden prevents unlimited shrink of unmapped areas and 
unrestricted growth of safe areas.

�The maximum size of the mapped area is set to 64 TB.

�Using thread-private memory mechanism to isolate thread-local safe areas.
� The entropy will not be reduced by thread spraying.
� Using hardware-assisted virtualization techniques.
� Each thread will be assigned a thread-private EPT (Extended Page Table).

Block Attack Vector-3

More Details are in Our Paper



• Vector-4 Monitoring page-table access patterns using cache side 
channels

• Observation
� It needs hundreds of Prime+Probe or Evict+Time tests.
� It is also imperative that the addresses of the PTEs corresponding to this 

memory area are not changed.
àThe cache entries mapped by these PTEs are not changed.

• Solution: Re-randomization!

Block Attack Vector-4



• SafeHidden also monitors legal accesses to the safe area that may be 
triggered by the attacker on purpose.

• Once such a legal access is detected, SafeHidden will randomize the 
location of the safe area.

• But, how to detect this legal access from the attacker?

Block Attack Vector-4



• The key step of cache side-channel attack against page table is to force a 
page table walk.

We could intercept 
TLB misses !!!

But, how to only intercept the 
TLB miss occurred in safe areas?

Block Attack Vector-4

Image from https://www.vusec.net/projects/anc/



• When the reserved bit is set, a page fault exception will be triggered 
during the page table walk.

• SafeHidden sets the reserved bit in all of the PTEs for the safe areas to 
detect the TLB misses.
�When a TLB miss occurs, it is trapped into the pf handler.

Convert TLB Miss to Page Fault Exception



� It could cause many false 
alarm TLB misses at new 
location.

� How to preload PTE into 
TLB under the KPTI technique?
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• SafeHidden is designed as a loadable kernel module.
�No need to modify the existing defenses.
�No need to re-compile the OS kernel.

• We integrated a thin hypervisor for a non-virtualized OS. 
• It virtualizes the running OS as the guest without rebooting the system. 
• The other components, called GuestKM, runs in guest kernel.

Architecture Overview
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• On X86_64/Linux Platform
– 3.4GHZ Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB RAM.
– Ubuntu 18.04 (Kernel 4.20.3 with KPTI enabled by default)

• SafeHidden protects two defenses that using IH.
– Shadow stack and O-CFI.
– The %gs is used to point to the safe area.

• Benchmarks
– CPU-intensive benchmarks: SPEC CPU2006 and Multi-threaded Parsec-2.1.

– Network I/O: Multiple processes Nginx and Multi-threaded Apache.
– Disk I/O: Bonnie++ benchmark tool.  

Experiment Setup



• CPU-intensive benchmarks
– SPEC CPU2006 benchmark with ref input

• Incurred 2.75% and 2.76% when protecting O-CFI and Shadow Stack.

– Multi-threaded Parsec-2.1 benchmark with native input
• Incurred 5.78% and 6.44% when protecting O-CFI and Shadow Stack.

Performance Evaluation



• Network I/O benchmarks
– Apache is configured to work mpm-worker mode (8 threads).

• Incurred 12.07% and 12.18% when protecting O-CFI and Shadow Stack.

– Nginx is configured to work with 4 worker processes.
• Incurred 5.35% and 5.51% when protecting O-CFI and Shadow Stack.

Performance Evaluation



• Disk I/O benchmarks
– Bonnie++ benchmark tool (read and write tests)

• Incurred 1.76% and 2.18% when protecting O-CFI and Shadow Stack.

Performance Evaluation



• SafeHidden proposes the re-randomization based IH technique against 
all known attacks.

• SafeHidden introduces the use of thread-private memory to isolate 
thread-local safe areas.
– Using hardware-assisted extended page tables.

• It devises a new technique to detect TLB misses.
– It is the key trait of cache side-channel attacks against the page tables.

Conclusion
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When to perform randomization?

Events
Responses in SafeHidden

SA UA TA OA

memory management system calls Alarm Rand Alarm —

syscalls that could return EFAULT Alarm Rand Alarm —

cloning memory space Rand Rand Rand Rand

memory access instructions — Rand Alarm —

Other Area (OA) Trap Area (TA) Safe Area (SA) Unmapped Area 
(UA)
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Thread-private Memory

• Instead of using the thread-private page table method, we use 
a thread-private EPT method to avoid the compatible problem.
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Thread-private Memory
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• Instead of using the thread-private page table method, we use 
a thread-private EPT method to avoid the compatible problem.



How to Integrate SafeHidden with KPTI? 

• KPTI splits the page table for each process into a 
user-mode page table and a kernel-mode page table.
– PCID is used to avoid the TLB flush during context-switch.
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How to Integrate SafeHidden with KPTI? 

• The TLB entry loaded in kernel-mode page table with 
kPCID cannot be used by user-mode code!
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How to Integrate SafeHidden with KPTI? 

• SafeHidden proposed to bind kernel-mode page table 
with uPCID temporarily. 
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How to Integrate SafeHidden with KPTI? 

• SafeHidden proposed to bind kernel-mode page table 
with uPCID temporarily. 

– But some pages related to this operation are also loaded.
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How to Integrate SafeHidden with KPTI? 

• SafeHidden proposed to bind kernel-mode page table 
with uPCID temporarily. 

– But some pages related to this operation are also loaded.
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To avoid these TLB entries to be exploited by the Meltdown attack, 
we flush them by using invcpid instructions



Reloading TLB Entries after Randomization

• SafeHidden uses the Intel TSX to test which PTEs of 

safe areas are loaded in the TLB.

• And then loading them into TLB after randomization 

to avoid many false alarms of TLB misses.

if _xbegin() == _XBEGIN_STARTED: 
access a page in safe area
_xend()

else
fallback routine

Abort if it is 

not in TLB

When MMU walk a poisoned 

PTE, it will trigger #PF, and 
then captured by Intel TSX.



• Recent attacks have made it vulnerable again.
– Via breaking theassumptions of this technique !!!

• Rethink the security assumptions of IH :

1. Failed guesses could crash the program à Avoid crash

2. Safe area is designed very small (high entropy) à Reduce entropy

3. Normal accesses will not leak the location à Leak page table structure

Information Hiding is Not Secure Any More


