SafeHidden: An Efficient and Secure Information
Hiding Technique Using Re-randomization

Zhe Wang', Chenggang Wu', Yingian Zhang? Bowen Tang', Pen-Chung Yews3,
Mengyao Xie'!, Yuanming Lai', Yan Kang', Yueqgiang Cheng#, and Zhiping Shi®

'Institute of Computing Technology, Chinese Academy of Sciences,
>The Ohio State University,

3University of Minnesota at Twin-Cities,

4Baidu USA,

>The Capital Normal University

B Information Hiding Technique

* Information Hiding Technique
— Hiding an important area at a random location

— Has no pointers in memory referring to it —
— Is as small as possible [stack]
— Normal accesses are done through ~ ~

an offset from a dedicated register

[heap]
executables
libraries

%$gs:1024

* Itis widely used in [} oxsememame |
— Code Pointer Integrity > Hidden ;Eé\f"]wj _ ~
— Control Flow Integrity 1\\ 1
— Code (Re-)Randomization T

Address Space

B Attacks against Information Hiding

%gs:0x0
0x 1fafe7fbf000 |

~ —
—
—
—
—
—
—
—
—
—
—
—
—
_——

—

Virtual Address

library

e

Avoid Crash

e CROP attack [NDss"16]

Using the exception handling mechanism to avoid crash.

* Clone-probing attack [5&P4]

Probing the child processes to avoid crash the parent process.

B Attacks against Information Hiding

%gs:0x0
0x 1fafe7fbf000 |

— .
—
—
—
—
—
—
—
—
— —
—

vt acres | oo [0 || RG]

Bingo

Reduce Entropy

* Attack via spraying safe areas [SECURITY16]
* Spraying thread-local safe areas via spraying threads.

B Attacks against Information Hiding

. 2

~ —
—
—
—
—
—
—
—
—
—
—
—
_— -
—

—

% gs:0x0
0x 1fafe7fbf000 |

— .
—
—
—
—
—
—
—
—
— —
—

Virtual Address main I I library Il

Reduce Entropy

* Attack via spraying safe areas [SECURITY16]

* Spraying thread-local safe areas via spraying threads.

* Attack via filling memory holes [SECURITY16]
 Allocating memory to occupy the unmapped areas.

B Attacks against Information Hiding

* Attack against Page Table Structure[NDS5"7]

T ——
—
—
—
— —
—
— —
—
— —
—
—
—

__________ 128T
Virtual Address main library stack
Ox1fafe7fbf000 = | %0gs:0x0 = 0x?2?2?22222222?
| page table indices (36-bit) |.f)age offset (12-bit)| PRIME+PROBE
|. 63 | 191 | 319 [447 | Cache
r I I [[) S I
CR3 T g g Leak OO A
- page |LCILILILICIL L] 8
' Table |[LICICICICICICIE s
HEE LOOOOICIE]
- I r |
_I Cache Entries
PML4 PDPT Page Directory Page Table |

0 4G
Phy51cal Address Image from https://www.vusec.net/projects/xlate/

B outline

* Threat Model

B Threat Model

* We consider an IH-based defense that protects a vulnerable application
against code reuse attacks.

— Web servers or browsers.

* The design of this IH-based defense is not flawed:

— Before launching code reuse attacks, attackers must circumvent the defense by
revealing the safe area.

* Attackers’ abilities
— Read and write arbitrary memory locations;
— Allocate and free arbitrary memory areas;
— Create any number of threads;

B Attack Vectors Summary of Attacks

Vector-1 Gathering memory layout information to help to locate safe areas

Vector-2 Creating opportunities to probe without crashing the system

Vector-3 Reducing the entropy of the randomized safe area locations

Vector-4 Monitoring page-table access patterns using cache side channels

B outline

* Our design

SafeHidden

B Our Design

« SafeHidden is proposed to block these attack vectors
— Mediating all types of probes that may leak the locations
— Randomizing safe areas upon detecting suspicious probes
— Isolating the thread-local safe areas

— Raising security alarms when illegal probes are detected

B Block Attack Vector-1

* Vector-1 Gathering memory layout information to help to locate safe areas

Q interception Points

4.& memory management system calls mmap, mprotect, brk,...

Syscalls that could return EFAULT read, write, access, send, ...

[heap] g
cloning memory space clone, fork, vfork
executables ‘Q & ysp) 85 W
libraries memory access instructions page fault exception

- Hidden a
But persistent attacks ~ ~

could always succeed. address Space

B Block Attack Vector-2

* Vector-2 Creating opportunities to probe safe areas without crashing the
system

//// [stack] [stack]

[heap] Leave Traps [heap] ﬁ&

executables |@ executables
libraries libraries

2 Hidden a
But persistent attacks ~ ~

could always succeed. agdress Space Address Space

B Block Attack Vector-3

* Vector-3 Reducing the entropy of the randomized safe area locations

* SafeHidden prevents unlimited shrink of unmapped areas and
unrestricted growth of safe areas.

— The maximum size of the mapped area is set to 64 TB.

— Using thread-private memory mechanism to isolate thread-local safe areas.
— The entropy will not be reduced by thread spraying.
— Using hardware-assisted virtualization techniques.
— Each thread will be assigned a thread-private EPT (Extended Page Table).

More Details are in Our Paper

Bl Block Attack Vector-4

* Vector-4 Monitoring page-table access patterns using cache side
channels

 Observation
— It needs hundreds of Prime+Probe or Evict+Time tests.

— Itis also imperative that the addresses of the PTEs corresponding to this
memory area are not changed.

—>The cache entries mapped by these PTEs are not changed.

 Solution: Re-randomization!

Bl Block Attack Vector-4

* SafeHidden also monitors legal accesses to the safe area that may be
triggered by the attacker on purpose.

* Once such alegal access is detected, SafeHidden will randomize the
location of the safe area.

* But, how to detect this legal access from the attacker?

Bl Block Attack Vector-4

* The key step of cache side-channel attack against page table is to force a
page table walk.

Core

We could intercept
Ea TLB misses !!!
©PT

Virt Addr -
Fill
IPhys Addr

—_— But, how to only intercept the

L2 L1 Data ’

t TLB miss occurred in safe areas?
L3 (Shared)

k3

DRAM

Image from https://www.vusec.net/projects/anc/

B Convert TLB Miss to Page Fault Exception

66 55 44

32 21 87

N Page Frame Number
I d

X gnore ey + Protection Bits

PTE

* When the reserved bit is set, a page fault exception will be triggered

during the page table walk.

o SafeHidden sets the reserved bit in all of the PTEs for the safe areas to

detect the TLB misses.

— When a TLB miss occurs, it is trapped into the pf handler.

B Flowchart of Page Fault Handler

More Details are in Our Paper

C <

TLB
Lookup

Y TLB
Hit?

Hardware Page
Table Walk

P

s > e

Return fiom Trap

Retry will | hit in TLB

Original Page

Fault Handler

Trap Handler: (2
Instrumented #PF >

(6

Relocate to the
New Address

[

Set Reserved
Bits in All of PTEs

!

Preload the PTE\
into TLB

1

N

Randomization

T

Clean All
Reserved Bits

Two Problems

@ How to preload PTE into
TLB under the KPTI technique?

@) It could cause many false
alarm TLB misses at new
location.

B outline

* System Implementation

B Architecture Overview

« SafeHidden is designed as a loadable kernel module.
— No need to modify the existing defenses.
— No need to re-compile the OS kernel.

* We integrated a thin hypervisor for a non-virtualized OS.
* It virtualizes the running OS as the guest without rebooting the system.
* The other components, called GuestKM, runs in guest kernel.

B Architecture Overview

Protected APP’s Protected APP’s Other
threadO threadl Applications
SafeHidden
Page Tables 0s Kernel\
~ Function
rocess
‘ Sched ’ Module
= "» Linux
l Notifier

K" =rcepto —> vmcall

Inject

// Kernel Module

: — N Interrupt
W .W — Hypercall Handlers
[,‘ p Violation #5011 Intercept
T Handler H - » cvents
#

Hardware

Extended page tables Hypervisor

B outline

 Evaluation

l Experiment Setup

* On X86_ 64/Linux Platform
— 3.4GHZ Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB RAM.
— Ubuntu 18.04 (Kernel 4.20.3 with KPTI enabled by default)

« SafeHidden protects two defenses that using IH.
— Shadow stack and O-CFl.
— The %gs is used to point to the safe area.

* Benchmarks

— CPU-intensive benchmarks: SPEC CPU2006 and Multi-threaded Parsec-2.1.
— Network 1/O: Multiple processes Nginx and Multi-threaded Apache.
— Disk 1/0: Bonnie++ benchmark tool.

B Performance Evaluation

 CPU-intensive benchmarks
— SPEC CPU2006 benchmark with ref input
* Incurred 2.75% and 2.76% when protecting O-CFl and Shadow Stack.
— Multi-threaded Parsec-2.1 benchmark with native input
* Incurred 5.78% and 6.44% when protecting O-CFl and Shadow Stack.

401
3 B SS SPEC CPU2006 benchmarks PARSEC-2.1 benchmarks
S 35+
et [SafeHidden when applied to SS
8 %0 OCFI
B 251§ SsafeHidden when applied to OCFI
> 201 B
o
© 151
£
3 10
g
& o7
0_

B Performance Evaluation

 Network I/O benchmarks

— Apache is configured to work mpm-worker mode (8 threads).
* Incurred 12.07% and 12.18% when protecting O-CFl and Shadow Stack.

— Nginx is configured to work with 4 worker processes.
* Incurred 5.35% and 5.51% when protecting O-CFl and Shadow Stack.

25 ¢
- | = baseline latency
: | =SS latency
20 E| C1SS+SH latency
= t | =C=SS overhead
D45 [l SH overhead
a F
E
>10 F
o
C
L
85 ¢

'\\(\ ‘.‘)“\ rLQ\(\\QQ\(\(LQQ\(})QQ\l\

File Size

30%

25%

(a) Apache + SS + SafeHidden

25

(&)}

mmm baseline latency
== OCFI latency
C_—JOCFI+SH latency
=O=QOCF| overhead

«»¥\»« SH overhead

D,
; A--..Aﬂ_

'\\l\ ‘J‘l\ rLQ\‘\'\QQ\(\(LQQ\(:DQ@l\

File Size

30%

- 25%

(b) Apache + OCFI + SafeHidden

14

- | mmm baseline latency
| == SS latency

L | C—ISS+SH latency
| =O=SS overhead
| ==/ SH overhead

’\\(\ ‘.’)\l\ rLQ\(\,\QQ\l\{LQQ%}DQQ\(\

File Size
(c) Nginx + SS + SafeHidden

Cred. N AU
| I 1| L

30% 14
25% 12
20%_ ’3‘1

> =
~
£

" 30%

|| mmm baseline latency _

| == OCFI latency U 259

| T OCFI+SH latency

| =O=OCFI overhead

I N 20%~
7\=- SH overhead |

File Size
(d) Nginx + OCFI + SafeHidden

B Performance Evaluation

* Disk I/O benchmarks

— Bonnie++ benchmark tool (read and write tests)
* Incurred 1.76% and 2.18% when protecting O-CFl and Shadow Stack.

10%
_ 8%

6%
4%
2%
0%
2%

d (%

Overhea

@ SafeHidden when applied to OCFI

OOCFI
B SafeHidden when applied to SS
mSS

Per Char ‘ Block Rewrite Per Char ‘ Block
Sequential Output Sequential Input

Random
Seeks

B Conclusion

» SafeHidden proposes the re-randomization based IH technique against
all known attacks.

» SafeHidden introduces the use of thread-private memory to isolate
thread-local safe areas.

— Using hardware-assisted extended page tables.

* It devises a new technique to detect TLB misses.

— Itis the key trait of cache side-channel attacks against the page tables.

Q&A

wangzhe12@ict.ac.cn

B Security Analysis

(a) The curve of p._, «10-+ (b) The curve of p(S .

1.0 3.5 , !
0.8 3'9" 003 0.0003 1
06 2.0 0005
5 U - 52.0__-.... OOO>
, , 1.0G-# 0001
0.0 k011 | 0.0 i | i
0" 5000 10000 15000 20000 0 5000 10000 15000 20000

Time of probings Time of probings

Figure 3: The probability of being captured by SafeHidden within
N probes (a) and the probability of locating the safe areas within N
probes successfully (b).

B When to perform randomization?

[stack]
hiladEn syscalls that could return EFAULT read, write, access, send, ...
cloning memory space clone, fork, vfork
T 7 memory access instructions page fault exception
ex:::taapgles Other Area (OA) Safe Area (SA) UnmaFS:)d Area
libraries
—
~ ~ SA UA TA OA
memory management system calls Alarm Rand Alarm —
i syscalls that could return EFAULT Alarm Rand Alarm —
LTI cloning memory space Rand Rand Rand Rand
- memory access instructions — Rand Alarm —

Address Space

B Thread-private Memory

* Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.

Thread0 Threadl
Virtual Memory Virtual Memory
[Guest |
Page Table
-: .

Sl EPTP EPTP
Guest Core 0 Guest Physical Memory Core1
Host

EPTO EPT1

Host Physical Memory

B Thread-private Memory

* Instead of using the thread-private page table method, we use
a thread-private EPT method to avoid the compatible problem.

Thread0) P Threadl
Virtual Memory My 2 Virtual Memory
1 i
e - T | [Guest |
I Threado’s safe area: E EI I || Page Table
| | I
: , 7l [! ! >
| Thread1’s safe area: L__ EI I > o
———————————— — o I
"nww = L]
il ! :.
.l EPTP B h EPTP N
Guest Core 0 Guest Physical Mefnory Core 1

===="1

EPTO EPT1
@

Host Physical Memory

B How to Integrate SafeHidden with KPTI?

* KPTI splits the page table for each process into a
user-mode page table and a kernel-mode page table.

— PCID is used to avoid the TLB flush during context-switch.

Kernel Mode User Mode

TLB
PC -
R3] = 1 PCID VPN->PFN
kPCID | oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->ox...
User Space User Space
uPCID [
o Rn]-oN ¥
: PGD PGD

Kernel User

B How to Integrate SafeHidden with KPTI?

* The TLB entry loaded in kernel-mode page table with
kPCID cannot be used by user-mode code!

Kernel Mode User Mode

TLB
CR3[11] =1 PCID VPN->PFN

kPCID oxsafehidden->ox...

Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area TLBPC . kPCID | oxsafehidden->o0x...

miss
User Space User Space kPCID oxsafearea ->Ox...
uPCID |
e Ri] o
: PCD PGD

Kernel User

B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

Kernel Mode User Mode

TLB
PC -
R3] = 1 PCID VPN->PFN
kPCID | oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID | oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->ox...
User Space User Space
uPCID [
D E - 4
: PGD PGD

Kernel User

B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.
— But some pages related to this operation are also loaded.

Kernel Mode User Mode
TLB
PC -
CR3[11] = 1 PCID VPN->PFN
kPCID oxsafehidden->ox...
Kernel Space Kernel Space
kPCID kPCID oxsafehidden->ox...
Safe Area Safe Area TL;(IZT kPCID | oxsafehidden->0x...
It
User Space Usar Spees uPCID | oxsafearea ->Ox...
l€— UuPCID [—>
R3]
¢ PGD PGD
Kernel User

B How to Integrate SafeHidden with KPTI?

» SafeHidden proposed to bind kernel-mode page table
with uPCID temporarily.

— But some pages related to this operation are also loaded.

Kernel Mode User Mode
TLB
PC PCID VPN->PFN

kPCID oxsafehidden->ox...

Kernel Space Kernel Space
kPCID kPCID oxsafehidden->ox...
Safe Area Safe Area kPCID | oxsafehidden->0x...
User Space Usar Spees uPCID | oxsafearea ->Ox...

€— UuPCID >

HRCIBD—xsafehidder>oiar——
— 7
: PGD PGD
Kernel User

To avoid these TLB entries to be exploited by the Meltdown attack,
we flush them by using invcpid instructions

B Reloading TLB Entries after Randomization

 SafeHidden uses the Intel TSX to test which PTEs of
safe areas are loaded in the TLB.

* And then loading them into TLB after randomization
to avoid many false alarms of TLB misses.

When MMU walk a poisoned
PTE, it will trigger #PF, and
then captured by Intel TSX.

if _xbegin() == XBEGIN_STARTED:

access a page in safe area
_xend() j Abort if it is

else not in TLB
fallback routine

B Information Hiding is Not Secure Any More

* Recent attacks have made it vulnerable again.
— Via breaking theassumptions of this technique !!!

* Rethink the security assumptions of IH :

1. Failed guesses could crash the program = Avoid crash
2. Safe areais designed very small (high entropy) = Reduce entropy

3. Normal accesses will not leak the location = Leak page table structure

