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Introduction



Machine Learning in Security
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e Detection is a fundamental problem in cybersecurity.

e e.g. Malware, intrusion, spam, phish

e Natural to use Machine Learning (ML) for these applications.



Adversarial Evasion Problem
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e ML-based techniques are often susceptible to adversarial examples at
test time.

e Attackers can manipulate malicious samples to look benign and fool
a classifier.



Realizable Attacks
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e Modify the actual entity.
e e.g., produce a valid PDF file or executable file.
e Features are subsequently extracted for ML.
e Have actual malicious effect (e.g., verified by a sandbox) but the
feature vector is classifed as benign.



Feature Space Attacks
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e An abstraction of realizable attacks.

e Directly work on features instead of entities. May not be realizable.
e Use an £, norm to measure the cost of modifying original examples.



Robust ML
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I can defend feature
space attacks!

e Essentially most approaches for robust ML leverage feature-space
attack models. e.g., robust optimization, adversarial training.



Motivation: Is Robust ML really robust?
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e Suppose we learn a Robust ML against a feature space attack
model. Is it robust against realizable attacks?



Contribution

e Model Validation: evalute the robustness of 'Robust ML’ against
realizable attacks.
e Robust ML using feature-space models may fail to provide adequate
robustness against realizable attacks.
e Model Refinement: 'fix' the feature-space attack models by using
conserved features.

e Generalized Robustness: explore to which extent ML robustness
can be generalized to multiple distinct realizable attacks.



Methodology and Experiments




A Case Study on PDF Malware Detectors

e Content-based detectors: use features based on content
information (e.g. size of a PDF file)
e PDFRate-R: 135 normalized features (real-valued)
e PDFRate-B: 135 binarized features
e Structure-based detectors: use binary features based on existence
of a collection of object paths
e SL2013: 6,087 paths
e Hidost: 961 paths



Attacks and Defense

e Realizable attack: EvadeML (Xu et al., NDSS).

e Automatically evades a PDF classifier by using genetic programming.
e Works on both structure- and content-based detectors.
e Feature-space attack model: multi-objective optimization.
e The modified feature vector is predicted as benign as possible.
e The modification cost (measured with an ¢, norm) is minimized.
e General defense: iterative retraining.

e |teratively uses an attack to produce adversarial examples, then adds
them into training data and retrain.
e Works for both realizable and feature-space attacks.



Model Validation:

Framework
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e Evaluation Metrics

e Adversarial data: robustness = 1 - success rate of EvadeML

o Clean data: ROC (receiver operating characteristic) curve.
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Model Validation: Real-valued and Content-based
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Figure 1: Left: evasion robustness. Right: ROC curve.

e Original: 2% evasion robustness.
o After defense: ~100% evasion robustness.

e Robust ML with feature-space model works but degrades

performance on clean data!
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Model Validation: Structure-based
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Figure 2: Left: evasion robustness. Right: ROC curve.

Original: 2% evasion robustness.

Defense using EvadeML: 98% evasion robustness.

Feature-space Robust ML: 70% evasion robustness and degradation
on clean data.

Robust ML using feature-space models is not perfect. Can we fix it
by creating a minimal anchoring?
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Model Refinement: Conserved Features

e Conserved features: a subset of features which compromise
malicious functionality if they are removed.
e Paths to objects which contain malicious codes.
e Paths objects which break the PDF if they are removed.

Identifying conserved features: systematically manipulating each
object in a PDF file and checking the maliciousness.

e [Existence of conserved features: we identified 4~8 conserved
features for each detector.

Feature-space attacks with conserved features: conserved features

are preserved in evasive instances.
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Model Refinement: Binarized Content-based
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Figure 3: Left: evasion robustness. Right: ROC curve.

e Defense using EvadeML: 100% evasion robustness.

e Feature-space Robust ML: 100% evasion robustness and
performance degradation on clean data.

e Feature-space Robust ML with conserved features: 100% evasion
robustness and improves ROC.
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Model Refinement: Structure-based
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Figure 4: Left: evasion robustness. Right: ROC curve.

e Defense using EvadeML: 98% evasion robustness.

e Feature-space Robust ML: 70% evasion robustness and performance
degradation on clean data.

e Feature-space Robust ML with conserved features: 100% evasion

robustness and significant improvement on clean data.
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Generalized Robustness

So far, evaluation and baseline defense used EvadeML.

e Is ML hardened with EvadeML effective against other realizable
attacks?

e Is ML hardened with a feature-space model of attacks (using
conserved features) generally effective against realizable attacks?
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Generalized Robustness: Mimicry+

Realizable attack on content-based classifiers
An improvement of Mimicry Attack (Srndic & Laskov, Oakland).
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Figure 5: Left: real-valued. Right: binarized.

e Hardening against EvadeML may fail to be robust to Mimicry+-.

e Robust ML (w/o conserved features) is still robust to Mimicry+.
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Generalized Robustness: Reverse Mimicry

Realizable attack that requires zero knowledge of target classifier
(Maiorca et al., ASIACCS)
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Figure 6: Left: real-valued content-based. Middle: binarized content-based.
Right: structure-based

e Hardening against EvadeML may fail to be robust to Reverse
Mimicry.
e Robust ML w/ conserved features is still robust to Reverse Mimicry.
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Generalized Robustness: Custom Attack

Exploitation of a feature extraction bug of the content-based
classifiers.
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Figure 7: Left: real-valued. Right: binarized.

e Defeats detector hardened using EvadeML.
e Defeats conserved features of binarized content-based detector.

e All feature-space approaches remain robust.
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Conclusion




e Robust ML methods which assume direct modification of features
and measures cost of adversarial noise as norm are sometimes, but
not always fully effective against real attacks.

e We can fix the model by identifying and using conserved features to
anchor the abstract attack model in the problem domain.

e Robust ML using feature space models (after the fix) exhibit more
general robustness than methods hardened only against a particular

(strong, adaptive) realizable attack.
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Questions?
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