
Site Isolation:
Process Separation for Web Sites within the Browser

Charlie Reis, Alex Moshchuk, Nasko Oskov
Google

Protecting Web Sites against Strong Attackers

● Rendering engine vulnerabilities are common
● Spectre / transient execution attacks work in the browser

● Shipped Site Isolation to all Chrome desktop users as mitigation
○ Overcame challenges beyond prior research browsers
○ Practical to deploy: compatibility, performance
○ Some limitations, but offers the best path to protection

Multi-Process Web Browsers

Browser Process

Renderer Process

evil.com

Sandbox

evil.com

evil.com

youtube.com

1. Renderer Exploit Attacker

Browser Process

Renderer Process

evil.com

Sandbox

evil.com

youtube.com

2. Memory Disclosure Attacker

Renderer data

<iframe> Other
pages

Renderer Process

Site Isolation

Site Isolation Architecture
Cross-Origin Read Blocking (CORB)Site-Dedicated Processes

foo.com

foo.com Cross-site
images, scripts

Cross-site
data

Browser Process

Renderer Process:
evil.com

evil.com

youtube.
com

Renderer Process:
youtube.com

Out-of-process iframes
● Challenging to support web platform

○ Secure compositing
○ Frame proxies
○ State replication
○ Many affected features

(e.g., find-in-page)

Browser Process

Renderer Process:
evil.com

evil.com

youtube.
com

Renderer Process:
youtube.com

Cross-Origin Read Blocking
● Must allow subresources

● Want to protect sensitive data
(HTML, XML, JSON)

● Mislabeled Content-Types
● Custom sniffing

foo.com

foo.com Cross-site
images, scripts

Cross-site
data

<!-- This is JS. -->
function a() {...}

Content-Type: text/html

● Must allow responses like:

<img src=
"bar.com/image.jpg">

<img src=
"bar.com/secret.html">

Enforcements
● Catch malicious IPC messages

○ Limit access to site data
○ Terminate misbehaving processes

● Matters for renderer exploits

Browser Process

Web Renderer

evil.com

Evaluation

Mitigating Renderer Exploits
● Renderer vulnerabilities matter in practice

○ 94 UXSS-like bugs in 2014-2018

● Web developer practices now robust to renderer exploits:
○ Authentication
○ Confidential data in HTML/XML/JSON
○ Cross-Origin Messaging
○ Anti-Clickjacking
○ Use of storage and permissions

Transient Execution Attacks: Mitigation Strategies
● 1. Remove precise timers (e.g., SharedArrayBuffers)

○ Not effective: Coarse timers can be amplified
○ Harmful to Web Platform

?
● 3. Site Isolation

○ Put data worth stealing out of reach
○ Effective for same-process variants
○ Combine with OS/HW mitigations for cross-process

● 2. Compiler/Runtime mitigations
○ Not effective: Can't handle all variants

https://pixabay.com/en/stopwatch-time-clock-deadline-hour-41469/
https://pixabay.com/en/burglar-crime-criminal-theft-thief-157142/

Addressing Limitations
● Sites vs Origins

○ https://google.com vs https://mail.google.com:443 (due to document.domain)
○ Opt-in origin isolation

● Many data types are not yet protected
○ Opt-in header, more CORB-protected types, SameSite cookie defaults

● Cross-process transient execution attacks (e.g., MDS)
○ Combine with OS/HW mitigations

● Not yet deployed on mobile devices
○ Preparing to isolate a subset of sites on Android

Practical to Deploy
● Performance Optimizations

○ Reduced potential process count and total memory overhead
○ Reduced latency for navigations and input

35

80

53

99

13%

9%

Conclusion
● Transient execution attacks change the web threat model

● Site Isolation offers best path to protection
○ Don't leak data to renderer exploits or Spectre attacks
○ Practical to deploy to all Chrome desktop users
○ Need to push further to protect more types of data

● Other systems may want to revisit their architectures
○ Not safe to run untrustworthy code in same process as sensitive data

