
Detecting Missing-Check Bugs via Semantic-
and Context-Aware Criticalness and

Constraints Inferences

Kangjie Lu, Aditya Pakki, Qiushi Wu

28th USENIX Security Symposium, August 16, 2019

1

Contributions

● Missing-check bug detection for OS kernels
○ Scalable and context-aware interprocedural static

analysis techniques
● Identification of critical variables, peers, and indirect-call

targets (additional 93% reduction)
● 278 new bugs in Linux 4.20

○ 151 patches confirmed with 134 in mainline

2

Security checks safeguard the OS kernel state

● Kernels are critical, complex, and error prone
● Developers enforce numerous (>400k) security checks
● What is a security check? [LRSan CCS’18]

○ Conditional statements (e.g., if statement) with at
least two branches
■ At least one branch has error handling and
■ At least one branch does NOT have error

handling
Not a security check if all branches have or do not have error handling

3

Common classes of security checks

4

/* Input validation */
res = get_user(size, buf);
if (size > MAX)
 return -EINVAL;

/* Check operation result */
*vaddr = pic_alloc(...);
if (*vaddr == NULL)
 return -ENOMEM;

/*Missing permission check*/
if (!access_ok(VERIFY_WRITE, addr, size))
 return -EFAULT;

/*Check system state */
if (!PGE_EMPTY(agp_bridge))
 return -EBUSY;

● Security checks themselves are buggy

● The most common case is - a security check itself is
missing

5

Who guards the guardians ?

Missing-check bugs: Not enforcing a required
security check on critical variable

6

Source of
critical variable

Intended
security check

Use of critical
variable

Present or
absent?

Importance of detecting missing-check bugs

● Adding/updating checks constitute 59.5% of
vulnerability patches

● Security impacts of missing-check
○ Denial of Service
○ Memory Corruption
○ Information leakage
○ ...

7

Possible detection approaches and challenges

● Rule-based approach to identify these bugs
○ Challenges

■ Require semantic understanding
■ Hard to generalize

● Cross-checking (i.e., statistical analysis)
○ Our choice

8

The idea of cross-checking

● Statistical model that avoids computing ground truth
○ Majority decision is applied to the group
○ Minority cases are likely bugs
○ Assumption: majority kernel code is good

● 9 out of 10 doors use deadbolts for security
○ A door without deadbolt is likely

unsecure

9

Challenges in cross-checking

● Scalability: Can’t cross check every variable
○ Focus on critical variables only

● Similarity: Generate statistically significant peers
○ Find sufficient semantically-similar code

● Granularity: Optimize the comparison levels
○ Not too coarse-grained or too fine-grained

10

High-level overview of Crix

● Crix - Criticalness and constraints Inferences for
detecting missing checks

11

Identify
critical

variables

Find
peers

Model
checks

Detect
deviations

as bugs

Critical variable identification solves scalability

Insights (1) a variable is critical if it is validated in a security
check; (2) Checked variables can propagate criticalness
● Collect checked variables as

initial seed
● Collect sources and propagated

variables of each critical variable

12Automatically Identifying Security Checks for Detecting Kernel Semantic Bugs, Lu et.al, ESORICS 2019, Part II, LNCS 11736

//Allocate a netlink msg
skb = genlmsg_new(...);
//Allocation success check
if (!skb)
 return -ENOMEM;
//skb criticality propagated
nla_put(skb,...);

Tackling similarity by identifying peers in kernels

● Requirement: A large set; similar context & semantics
● Observation: indirect calls, return inst, direct callers

generate peers
● Approach: Slice from critical variable to src & use

13

Indirect call (Arg) Direct call (parm)Return Inst (rval)

src

Callee 1

Callee 2

Callee t

src

LoadInst 1

LoadInst s
use

Caller 1

Caller 2

Caller c

Precisely identifying indirect call targets

● Challenge: scalability, callgraph precision
● Indirect calls peers share similar arguments

○ Count & type
● Currently, indirect call targets are identified via

○ Points-to analysis or Function-type matching
● Our new approach - Two-layer type analysis

14

Two-layer Type Analysis for accurate indirect call
peers identification

● First layer - function type matching
○ add(int a, int b) vs add1(int a, int b, int c)

● Second layer - struct type matching
○ Function pointers are stored in a struct field &
○ Loaded from this struct field during dereference

● Uses escape analysis for soundness

15

Cross checking peers to detect deviations

● Use global threshold, Relative Frequency (RF = 0.15)

● RF: ratio of slices missing a check (Nnc) to total number
of slices (Nt)

● RF determined via empirical study of security patches

16

RF = Nnc / Nt

Implementation of Crix

● Multiple LLVM 8.0 passes
● 4.5K lines C++ code
● 64 minutes to complete
● 17,343 modules for x86 allyesconfig
● Uses threshold (RF) to prioritize 804 bugs

○ Ranking as a heuristic

17

Evaluating Crix on Linux Kernel 4.20

● 278 new bugs
○ 134 applied to mainline
○ 99 bugs fixed within one week of submission
○ 195 bugs in driver modules

■ 27 driver modules have >1 bug
○ Latent period of 4 years 7 months

■ 10% have latent period over 10 years

18

Besides Alias Analysis, Crix has more limitations

● Context determination is not comprehensive
○ In error paths, missing checks are often

considered unnecessary

https://www.nationalgeographic.org/media/sinking-of-the-titanic/
19

Conclusion

● Security checks are critical but buggy
● Finding, modeling, cross-checking peer slices for

semantic- & context-aware detection
● 93% more reduction in indirect call targets compared

to existing techniques
● Code @ https://github.com/umnsec/crix

20

https://github.com/umnsec/crix

