
From IP ID to Device ID and
KASLR Bypass

Amit Klein (joint research with Benny Pinkas)

Bar-Ilan University

http://www.securitygalore.com/
http://www.pinkas.net/

Why do we need user (device) tracking?
From the literature:

• Real-time targeted marketing (John Wilander, yesterday: “Cross Site Tracking”)

• Campaign measurement

• Fraud detection

• Protection against account hijacking

• Anti-bot and anti-scraping services

• Enterprise security management

• Protection against DDOS attacks

• Reaching customers across devices

• Limiting number of accesses to services

Introduction to IP ID

• IP ID – 16 bit IP header field
• Identify fragments of the same IP datagram

• Should not repeat “too closely” for same ‹IPSRC, IPDST, protocol›

• Should not be predictable

• Implementation scheme (Windows, Linux+Android stateless protocols)
• Large array of counters (M=2048/8192)

• Hash function from ‹IPSRC, IPDST, protocol, key› to a counter

• Increment the counter [Linux+Android: with extra randomness via tnow-told]

• Use the result [Windows: add hash of ‹IPSRC, IPDST, key2›]

Windows Linux

Attack setup

• Tracking HTML snippet, containing JS code
• Can be embedded in any website

• The snippet forces the browser to connect to multiple attacker IPs

• Attacker collects IP ID for multiple (attacker) destination IPs

• We show how an attacker can calculate a device ID
• Device ID remains unchanged across browsers, network switches, etc.

• Can be used to track the user (device)

• Each snippet (site) can use a different set of destination IPs

Attack concept

• Based on cryptanalysis of the IP ID generation algorithm

• Requires IP IDs sent to multiple destinations (IP addresses)

• We use collisions of the hash values (array indices), which result in
related counter values (same bucket, different times)

Attack concept

• We find the algorithm key (in full or in part) – 32 to 48 bits
• This key is essentially unique per-device (up to the birthday paradox)

• The key is only regenerated at startup (Windows – only at restart):
• Same key for all browsers, incl. privacy mode

• Same key for all networks (incl. many VPNs!)

• Invariant w.r.t. the set of destination IP addresses

Windows - The IP ID Algorithm

• β[] is the counter array, of size M=8192.

• IP ID generation algorithm (reverse engineered

from tcpip.sys):
i←hK,K2(class B of IPDST, IPSRC) mod M

v←β[i] + (K1 ⊕ T(K,IPDST||IPSRC)) mod 232

β[i]++

IPID ← v mod 215

• K1 (32 bits), K2 (32 bits), K (320 bits) - keys

• Hash function T (Toeplitz Hash) is bilinear (=very weak)

Windows Attack – Phase 1

• Note that the index i depends only on class B network of IPDST

• Note that only 15 least significant bits of the counter β[i] are used

• Have several=6 IPs in the same class B, and obtain IP IDs for them:
• All fall into the same counter β[i]

• Enumerate over 215 values of β[i], and get 15 linear equations over GF(2) on K:

For IPp and IPIDp , IPq and IPIDq

IPIDx = β[i]+x+(K1⊕T(K,IPx||IPSRC)) mod 215

(IPIDp - β[i]-p)⊕(IPIDq - β[i]-q) = T(K,IPp||IPSRC)⊕ T(K,IPq||IPSRC)

= T(K, IPp⊕ IPq)

• Solve linear equations to obtain 30 bits of K (16 high bits of IPp⊕ IPq are 0)

Windows Attack – Phase 2

• Have several pairs of IPs, each pair in its own class B network

• Enumerate over additional 16 bits of K, to calculate any T(K,32-bit)

From phase 1:

IPID* = β[*]+ (K1⊕T(K,IP*||IPSRC||032)) mod 215

K1⊕T(K,0||IPSRC||032)=(IPID* - β[*]) ⊕T(K,IP*)=X

• So (for each pair IP0, IP1 in the same class B network):

IPIDj -j-(K1⊕T(K,IPj||IPSRC||032)) mod 215 = β[…]

IPIDj -j-(T(K,IPj) ⊕ X) mod 215 = β[…]

• Compare β[…] from j=0 and j=1, and eliminate

Linux+Android – Introduction to KASLR

• KASLR=Kernel Address Space Layout Randomization

• ASLR is used to mitigate ROP (Return-Oriented Programming) and similar
techniques
• ROP is based on chaining ROP gadgets to form a (malicious) “program”

• ROP gadget is code in a known location

• ASLR randomizes the image load address (of modules, programs, etc.) to prevent the attacker
from knowing the location of ROP gadgets

• KASLR randomizes the kernel image load address. Enumeration is N/A since a “miss” results
in O/S crash (very invasive…)

• Typically KASLR adds a random offset (Linux – 9 bits, Android - 16 bits) in 2MB increments

• KASLR bypass = knowing kernel image address offset.

Linux+Android – stateless protocol (e.g. UDP)
IP ID Algorithm
• Algorithm:

i←hashK(IPDST||IPSRC||protocol⊕g(net)) mod M

β[i]←(β[i]+1+random({0,…,tnow-t[i]-1})) mod 216

t[i] ← tnow

IPID ← β[i]

• M=2048, K is a 32 bit key, protocol=17 (UDP)

• t – in “jiffies” (100Hz/250Hz/300Hz) since boot

Linux+Android – stateless protocol (e.g. UDP)
IP ID Algorithm
• Algorithm:

i←hashK(IPDST||IPSRC||protocol⊕g(net)) mod M

β[i]←(β[i]+1+random({0,…,tnow-t[i]-1})) mod 216

t[i] ← tnow

IPID ← β[i]

• M=2048, K is a 32 bit key, protocol=17 (UDP)

• t – in “jiffies” (100Hz/250Hz/300Hz) since boot

• net – in kernel v4.1 and above, kernel address of net namespace struct (address
publicly known per build, up to KASLR offset)

• g() – shift right by const (7/6/12) and truncate to 32 bits. Gets all the KASLR offset
bits into the mix

The underlying issue in Linux/Android

Linux+Android Attack (simplified)

• Send a burst of L=400 UDP packets (one per IP address)

• Consider a bucket collision (same i) for two IP addresses:

• A burst means that tnow-t[i] is small and therefore random(0,…,tnow-t[i]-1) is small

• Therefore, the 2nd packet IPID will be only slightly higher than the 1st packet IPID

• Collect pairs of IP addresses that obey the above

• There will be false positives

• Enumerate over a 32-bit key (for newer kernels – also the KASLR offset, 9-bit or 16-bit
quantity)

• For each key, count number of actual bucket collisions in the pairs collected

• For a correct key this would be above some threshold (ν=11)

• Enumeration is CPU intensive, may take time (esp. for 248)

• We also find the KASLR offset – hence KASLR bypass

Vendor Status Following Our Reports

• Windows (CVE-2019-0688) – fixed by Microsoft in April 2019 Update
• Nature of the fix – unknown. Presumably a different algorithm.

• Undocumented registry setting can force fallback to the old (vulnerable) version ;-)
(only for version<1903)

• Linux
• KASLR bypass (CVE-2019-10639) – fixed mainline (5.1-rc4), stable (5.0.8) and all

relevant long term versions (4.19.35, 4.14.112, 4.9.169, 4.4.179)

• Also extends key size to 64-bit

• Extend key size to 64-bit in 3.18.139, 3.16.67 via a patch contributed by the authors

• Switch to SipHash and 128-bit key (CVE-2019-10638) – 5.2-rc1, 5.1.7, 5.0.21, 4.19.48,
4.14.124 (+ 3.16.72 released August 13th)

Conclusions

• Security/privacy is a concern, even when generating seemingly non-
security data

• Use industrial-strength crypto

• Use adequate-sized key

• Don’t use sensitive data as key

Q&A

Thanks!

Extended version of the paper:

https://arxiv.org/pdf/1906.10478.pdf

https://arxiv.org/pdf/1906.10478.pdf

