From IP ID to Device ID and
KASLR Bypass

Amit Klein (joint research with Benny Pinkas)

Bar-llan University



http://www.securitygalore.com/
http://www.pinkas.net/

Why do we need user (device) tracking?

From the literature:

* Real-time targeted marketing (John Wilander, yesterday: “Cross Site Tracking”)
* Campaign measurement

* Fraud detection

* Protection against account hijacking

* Anti-bot and anti-scraping services

* Enterprise security management

* Protection against DDOS attacks

e Reaching customers across devices

* Limiting number of accesses to services

Center for Research in Applied
Cryptography and Cyber Security



Introduction to IP ID

e |[PID— 16 bit IP header field

* |dentify fragments of the same IP datagram
* Should not repeat “too closely” for same «IPg., IPycr, protocol>
* Should not be predictable

* Implementation scheme (Windows, Linux+Android stateless protocols)
* Large array of counters (M=2048/8192)
* Hash function from «IP., IPycp, protocol, key» to a counter
* Increment the counter [Linux+Android: with extra randomnessvia t_ -t 4]
* Use the result [Windows: add hash of <P, IPyc, key,>]

Center for Research in Applied
Cryptography and Cyber Security



Windows Linux

IPsgc, IPpst IPsgc, IPpst, protocol@g(net)

-:— 1+random(At)

o

T
IPID IPID

rchin Ald
ypgphydyb rity



Attack setup

* Tracking HTML snippet, containing JS code
* Can be embedded in any website

* The snippet forces the browser to connect to multiple attacker IPs
 Attacker collects IP ID for multiple (attacker) destination IPs

* We show how an attacker can calculate a device ID

* Device ID remains unchanged across browsers, network switches, etc.
e Can be used to track the user (device)

e Each snippet (site) can use a different set of destination IPs




Attack concept

» Based on cryptanalysis of the IP ID generation algorithm
e Requires IP IDs sent to multiple destinations (IP addresses)

* We use collisions of the hash values (array indices), which result in
related counter values (same bucket, different times)




Attack concept

* We find the algorithm key (in full or in part) — 32 to 48 bits
 This key is essentially unique per-device (up to the birthday paradox)

* The key is only regenerated at startup (Windows — only at restart):
» Same key for all browsers, incl. privacy mode
e Same key for all networks (incl. many VPNs!)
* Invariant w.r.t. the set of destination IP addresses

Center for Research in Applied
Cryptography and Cyber Security



Windows - The IP ID Algorithm

B[] is the counter array, of size M=8192. IPsgc, IPpsr
* [P ID generation algorithm (reverse engineered |
from tcpip.sys): ’ﬁ‘}
i< hy ,(class B of IPys;, IPgpc) mod M sCTTTT - TTTT1
v&Bli] + (K1 @ T(K P, | |IPerc)) mod 232 3
Blil++
IPID & v mod 2'° |
IPID

* K1 (32 bits), K2 (32 bits), K (320 bits) - keys

e Hash function T (Toeplitz Hash) is bilinear (=very weak)




Windows Attack — Phase 1

* Note that the index / depends only on class B network of /P,
* Note that only 15 least significant bits of the counter B[i] are used

* Have several=6 IPs in the same class B, and obtain IP IDs for them:
 All fall into the same counter B[i]
* Enumerate over 2'° values of B[i], and get 15 linear equations over GF(2) on K:

(IPID, - Bli]-p)D(IPID, - Bli]-q) =
(K, IP, D IP,)
* Solve linear equations to obtain 30 bits of K (16 high bits of IP, & IP, are 0)




Windows Attack — Phase 2

* Have several pairs of IPs, each pair in its own class B network
 Enumerate over additional 16 bits of K, to calculate any T(K,32-bit)

KIDT(K,0| | IPesc| | 032) =X
* So (for each pair IP,, IP, in the same class B network):

IPID; -j~(T(K,IP;) €D X) mod 2> = [...]
e Compare BJ...] from j=0 and j=1, and eliminate




Linux+Android — Introduction to KASLR

 KASLR=Kernel Address Space Layout Randomization

e ASLR is used to mitigate ROP (Return-Oriented Programming) and similar
techniques

ROP is based on chaining ROP gadgets to form a (malicious) “program”
ROP gadget is code in a known location

ASLR randomizes the image load address (of modules, programs, etc.) to prevent the attacker
from knowing the location of ROP gadgets

KASLR randomizes the kernel image load address. Enumeration is N/A since a “miss” results
in O/S crash (very invasive...)

Typically KASLR adds a random offset (Linux — 9 bits, Android - 16 bits) in 2MB increments

e KASLR bypass = knowing kernel image address offset.

Center for Research in Applied
Cryptography and Cyber Security



Linux+Android — stateless protocol (e.g. UDP)
IP ID AI gorlthm IPsrc, IPpst, protocol@g(net)

e Algorithm:
i<~hash,(IP,¢;| | IPspc| | protocol @©g(net)) mod M
Bli]<(B[/]+1+random({0,...,t,,-t[/]-1})) mod 21¢
thil €t
IPID <& BIi]

« M=2048, K is a 32 bit key, protocol=17 (UDP)
e t—in “jiffies” (100Hz/250Hz/300Hz) since boot IPID

M-1
HEEN

1+random(At)




Linux+Android — stateless protocol (e.g. UDP)
IP ID AI gorlthm IPsrc, IPpst, protocol@g(net)

e Algorithm:
i<-hash,(IP,¢;| | IP<pc| | protocol @©g(net)) mod M
B[i1¢(B[i]+1+random({0,...,t. .. -t[i]-1})) mod 21®
tli] &t
IPID & B[]

« M=2048, K is a 32 bit key, protocol=17 (UDP)

e t—in “jiffies” (100Hz/250Hz/300Hz) since boot IP| D

* net—in kernel v4.1 and above, kernel address of net namespace struct (address
publicly known per build, up to KASLR offset)

 g() — shift right by const (7/6/12) and truncate to 32 bits. Gets all the KASLR offset
bits into the mix

Center for Research in Applied
Cryptography and Cyber Security

M-1
now
L]

1+random(At)




The underlying issue in Linux/Android

"PHENOMENAL3CRYETO, POWER




Linux+Android Attack (simplified)

Send a burst of L=400 UDP packets (one per IP address)

Consider a bucket collision (same i) for two IP addresses:
* A burst means that t_  -t[i] is small and therefore random(0,...,t, .,,-t[i]-1) is small
* Therefore, the 2" packet IPID will be only slightly higher than the 15t packet IPID
* Collect pairs of IP addresses that obey the above

* There will be false positives

Enumerate over a 32-bit key (for newer kernels — also the KASLR offset, 9-bit or 16-bit
guantity)

* For each key, count number of actual bucket collisions in the pairs collected

* For a correct key this would be above some threshold (v=11)

* Enumeration is CPU intensive, may take time (esp. for 248)

We also find the KASLR offset — hence KASLR bypass

Center for Research in Applied
Cryptography and Cyber Security



Vendor Status Following Our Reports

 Windows (CVE-2019-0688) — fixed by Microsoft in April 2019 Update

* Nature of the fix — unknown. Presumably a different algorithm.

* Undocumented registry setting can force fallback to the old (vulnerable) version ;-)
(only for version<1903)

* Linux
e KASLR bypass (CVE-2019-10639) — fixed mainline (5.1-rc4), stable (5.0.8) and all
relevant long term versions (4.19.35, 4.14.112, 4.9.169, 4.4.179)

* Also extends key size to 64-bit
* Extend key size to 64-bit in 3.18.139, 3.16.67 via a patch contributed by the authors

e Switch to SipHash and 128-bit key (CVE-2019-10638) — 5.2-rc1, 5.1.7, 5.0.21, 4.19.48,
4.14.124 (+ 3.16.72 released August 13t)

Center for Research in Applied
Cryptography and Cyber Security



Conclusions

e Security/privacy is a concern, even when generating seemingly non-
security data

e Use industrial-strength crypto
e Use adequate-sized key

* Don’t use sensitive data as key




Q&A

Thanks!

Extended version of the paper:

https://arxiv.org/pdf/1906.10478.pdf

[u]

T



https://arxiv.org/pdf/1906.10478.pdf

