

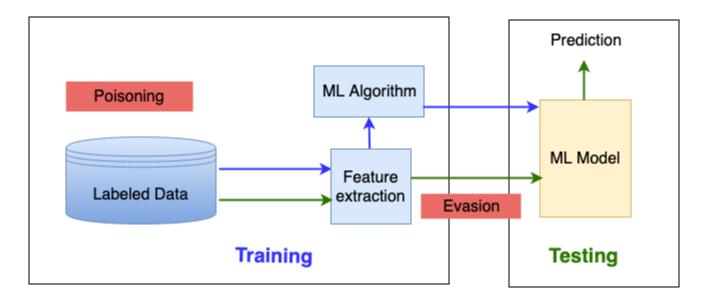
University of Cagliari, Italy

Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli

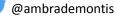
Usenix Security Symposium 2019, Aug. 14-16, Santa Clara, California, USA

Attacks against machine learning



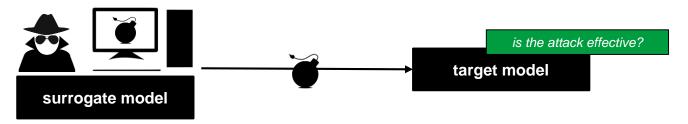
Threat model

- Evasion: add minimum amount of perturbation to a test point to change prediction
- Poisoning: add a fraction of poisoning points in training to degrade model accuracy (availability attack)
- Attacker Knowledge
 - White box: full knowledge of the ML system
 - Black-box: query access to the model



Why study transferability?

• **Transferability:** the ability of an attack, crafted against a **surrogate** model, to be effective against a different, *unknown* **target** model [1,2]



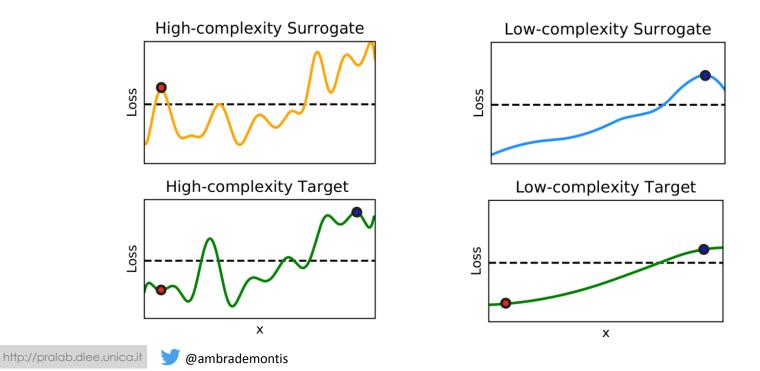
- Open problems:
 - What are the factors behind the transferability of evasion and poisoning attacks?
 - When and why do adversarial attacks transfer?

Contributions

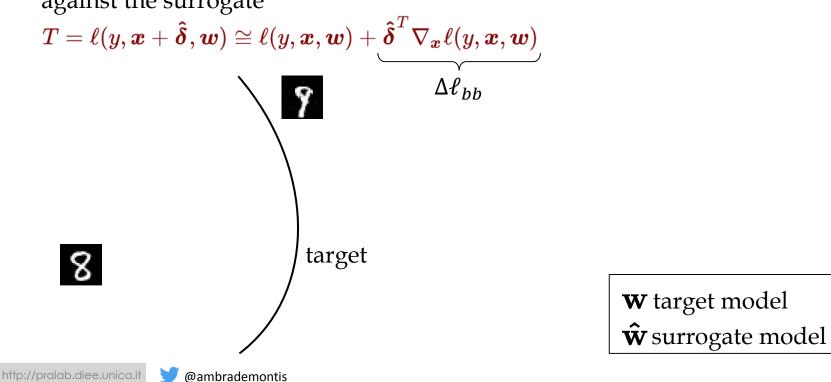
- Optimization framework for evasion and poisoning attacks
- Transferability definition and theoretical bound
 - Metric 1: Size of the input gradient
 - Metric 2: Gradient alignment
 - Metric 3: Variability of the loss landscape
- Comprehensive experimental evaluation of transferability
- Study the relationship between transferability and model complexity

Why complexity may influence transferability?

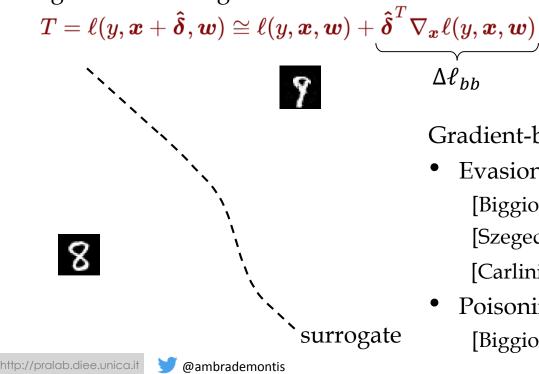
Model complexity: The capacity of the classifier to fit the training data (can be controlled through regularization)



Loss attained by the target on an adversarial point $\mathbf{x}^* = \mathbf{x} + \hat{\delta}$ crafted against the surrogate



Loss attained by the target on an adversarial point $\mathbf{x}^* = \mathbf{x} + \hat{\mathbf{\delta}}$ crafted against the surrogate



Gradient-based optimization:

Evasion:

[Biggio et al. 13],

[Szegedy et al. 14], [Goodfellow et al. 14],

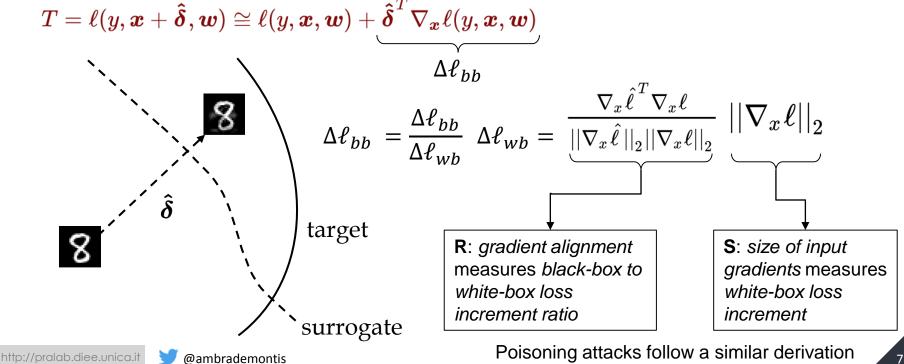
[Carlini and Wagner 17], [Madry et al. 18]

Poisoning: [Biggio et al. 12, Suciu et al. 18]

http:/

Loss attained by the target on an adversarial point $\mathbf{x}^{\star} = \mathbf{x} + \hat{\delta}$ crafted against the surrogate

Loss attained by the target on an adversarial point $\mathbf{x}^* = \mathbf{x} + \hat{\mathbf{\delta}}$ crafted against the surrogate



Metric 1: Size of input gradients

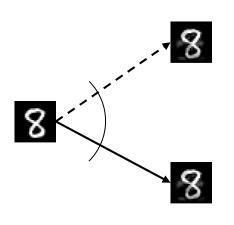
- Evaluates the loss increment $\Delta \ell_{wb}$ incurred by the target classifier under attack
 - Intuition: to capture sensitivity of the loss function to input perturbations, as also highlighted in previous work (at least for evasion attacks [1,2,3])

$$S(\mathbf{x},y) = ||
abla_x \ell||_2$$

- 1. C. Lyu et al., A unified gradient regularization family for adversarial examples, ICDM 2015
- 2. A. S. Ross and F. Doshi-Velez, Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients, AAAI 2018
- 3. C. J. Simon-Gabriel et al., *Adversarial vulnerability of neural networks increases with input dimension*, arXiv 2018

Metric 2: Gradient alignment

• Evaluates the ratio $\frac{\Delta \ell_{bb}}{\Delta \ell_{wb}}$ between the loss increment incurred in the black-box case and that incurred in the white-box case



Black-box attack against the surrogate model $egin{alignment} & Gradient alignment \ & R(\mathbf{x},y) = rac{
abla_x \hat{\ell}^T
abla_x \ell}{||
abla_x \hat{\ell}\,||_2 ||
abla_x \ell||_2} \end{split}$

White-box attack against the target model

Metric 3: Variability of the surrogate loss landscape

• This metric evaluates the variability of the surrogate classifier under training data resampling

$$V(\mathbf{x}, y) = \mathbb{E}_{\mathcal{D}}\{\ell(y, \mathbf{x}, \hat{\mathbf{w}})^2\} - \mathbb{E}_{\mathcal{D}}\{\ell(y, \mathbf{x}, \hat{\mathbf{w}})\}^2$$

Experimental setup

Datasets:

- Evasion: Drebin (Android Malware Detection)
- Poisoning: LFW (Face Verification task 1 vs 5)
- Evasion & Poisoning: MNIST89

Classifiers (8 surrogates, 12 target models):

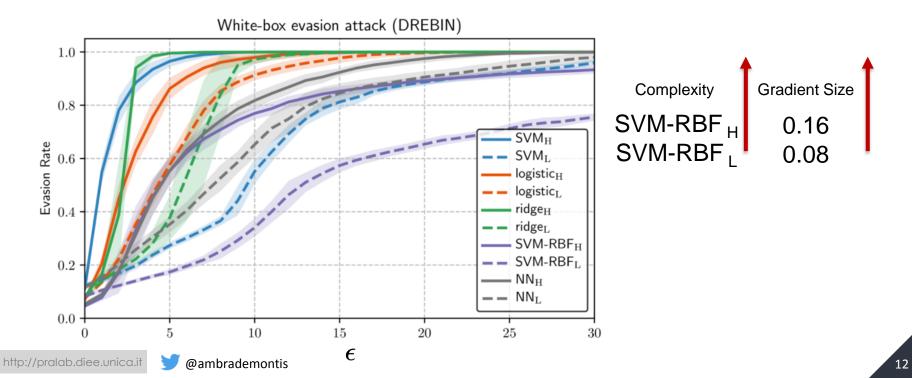
ridge, logistic regression, linear/RBF SVM, neural networks, random forests

Experiments:

- White-box security evaluation
- Black-box security evaluation (all combinations of targets and surrogates)
- Correlation between the proposed metrics, transferability and model complexity
- Statistical tests

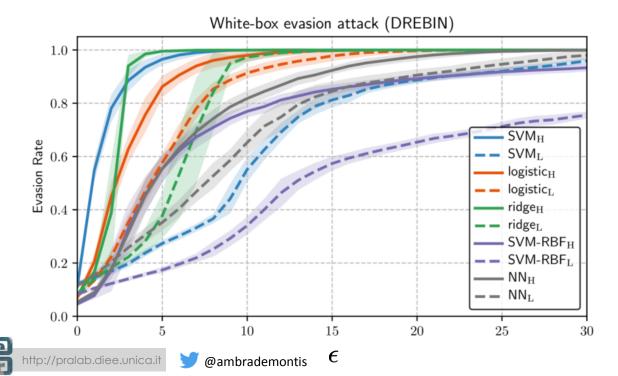
Transferability of evasion attacks

- **RQ1:** Are target classifiers with larger input gradients more vulnerable?
 - How does **model complexity** affect the size of input gradients?



Transferability of evasion attacks

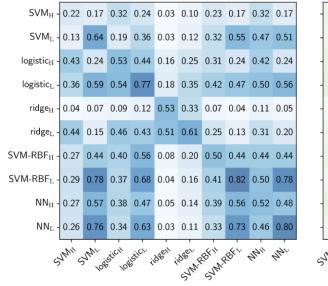
- **RQ1:** Are target classifiers with larger input gradients more vulnerable?
 - How does **model complexity** affect the size of input gradients?



- Higher complexity models have larger gradients
- Target with larger gradients are more vulnerable

Transferability of evasion attacks

• **RQ2**: Is the **gradient alignment** correlated with the difference of the perturbations computed considering the target and the surrogate models?



gradient alignment

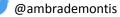
perturbation correlation

14	.11	.17	.19	.07	.12	.15	.10	.17	.11
12	.53	.17	.29	.01	.05	.29	.49	.29	.42
.16	.17	.23	.27	.09	.14	.20	.14	.24	.17
17	.31	.28	.39	.05	.12	.27	.29	.34	.34
06	.01	.07	.05	.25	.19	.03	.00	.02	.00
13	.04	.15	.11	.18	.36	.09	.01	.06	.02
14	.27	.18	.25	.03	.07	.29	.29	.27	.25
09	.50	.15	.28	.00	.03	.30	.58	.29	.46
16	.28	.22	.30	.03	.06	.26	.29	.35	.34
11	.44	.18	.31						
Sunt Sunt Sunt Sunt Sunt Sunt Sunt Sunt									
10% 10% SMM SMM									

The gradient alignment metric is heavily correlated with the correlation between the perturbations

Does model complexity impact poisoning?

- The findings are similar to evasion for input gradient and variability of loss landscape
- Differences from evasion:
 - For poisoning the best surrogates are the ones with similar level of model complexity



Summary

- Transferability definition and metrics to investigate connections between *attack transferability* and *complexity* of target and surrogate models
- Extensive experiments on 3 datasets and 12 classifiers have shown that:
 - High-complexity models are more vulnerable to both evasion and poisoning attacks
 - Low-complexity models are better surrogates to perform evasion attacks
 - The complexity of the best surrogate is the same as the one of the target for availability poisoning
- Open-source code available within the Python library SecML:
 - Code: <u>https://gitlab.com/secml/secml</u>
 - Docs: <u>https://secml.gitlab.io</u>

