
CSI NN  
Reverse Engineering of Neural Network
Architectures Through 
Electromagnetic Side Channel

Lejla Batina1, Shivam Bhasin2,
Dirmanto Jap2, Stjepan Picek3

1 Radboud University, Netherlands
2 NTU, Singapore

3 TU Delft, Netherlands

USENIX 2019, Santa Clara, USA
13-15 August 2019

Machine Learning & Security
• Machine learning (ML) has wide applications

across industries.
• Security is just one popular application for ML
• US$ 35 Billion Industry by 20241
• Optimized ML model are Intellectual property
• Leaked models can leak information about

sensitive training sets
!2

1		https://www.marketwatch.com/press-release/artificial-intelligence-in-security-market-size-is-projected-to-be-around-us-35-billion-by-2024-2018-10-07

This Work …
• Reverse Engineering

!3

This Work …
• Reverse Engineering
• Through Side-Channel

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers
– Number of neurons in each layer

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers
– Number of neurons in each layer

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers
– Number of neurons in each layer
– Activation function in each neuron

!3

This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers
– Number of neurons in each layer
– Activation function in each neuron
– Input weights to each neuron

!3

Electromagnetic (EM) SCA

!4

Electromagnetic (EM) SCA
• Non-invasive

!4

Electromagnetic (EM) SCA
• Non-invasive
• Serious threat to pervasive computing

!4

Electromagnetic (EM) SCA
• Non-invasive
• Serious threat to pervasive computing
• Exploiting unintentional EM leakage

!4

Electromagnetic (EM) SCA
• Non-invasive
• Serious threat to pervasive computing
• Exploiting unintentional EM leakage
• Powerful & practical

– Keeloq
– FPGA Bitstream encryption
– Bitcoin wallets

!4

Electromagnetic (EM) SCA
• Non-invasive
• Serious threat to pervasive computing
• Exploiting unintentional EM leakage
• Powerful & practical

– Keeloq
– FPGA Bitstream encryption
– Bitcoin wallets

• Applications beyond secret key recovery

!4

Electromagnetic (EM) SCA
Simple EM Analysis (SEMA)
• Adversary learns secret information by

visual inspection of (usually single)
power/EM measurement

• Ex: observe square & multiply in
exponentiation etc.

Differential EM Analysis (DEMA)
• Adversary extract secret information

statistically from EM trace
• Target leakage from function f(x,k) of Secret

k, input x
• EM leakage ➔ L(f(x,k))
• Correct key k* maximizes: ⍴(t, L(f(x,k)))
• Most commonly used leakage model L is

Hamming Weight (HW)
• A microcontroller leaks in Hamming Weight

when sensitive data is loaded to pre-charged
data bus

!5
Source:	https://anysilicon.com/side-channel-attacks-differential-power-analysis-dpa-simple-power-analysis-spa-works/

Adversary Model
• Recover the neural network architecture using only side-channel

information
• Adversary does not know the architecture of the used network but

can feed random/known inputs to the DNN and capture
corresponding electromagnetic side-channel traces

• No assumption on the type of inputs; we work with real numbers
• Assumption: Implementation of the machine learning algorithm with

no side-channel countermeasures

!6

Experimental Setup
• Passive EM Measurement
• Near-field probe
• 30dB pre-amplifier for clear signal
• Measurements averaged for noise filtering
• For bigger networks, measurements are made

sequentially for different layers
• Targets: ATMEGA AVR328P, ARM Cortex-M3

!7

Experimental Setup

!8

Experimental Setup

!8Target

Experimental Setup

!8Target

Probe

Experimental Setup

!8Target

Probe

Pre-amplifier

Experimental Setup

!8Target

Probe

Pre-amplifier

Trace

Lets Start With Some Visual
Inspection!!!!

!9

Identifying Neurons
• Simple EM Analysis
• Hidden layer with 6 neurons = 6 repeating patterns
• Each neuron executes a series of multiplication, followed by activation
• Activation Function in this case = Sigmoid

!10

Identifying Neurons
• Simple EM Analysis
• Hidden layer with 6 neurons = 6 repeating patterns
• Each neuron executes a series of multiplication, followed by activation
• Activation Function in this case = Sigmoid

!10

1 2 3 4 5 6

Recovering Activation Function
• Timing Attack
• Each activation function has

distinct timing pattern
• Timing patterns can be pre-

characterized for different
NN libraries

• We measure precise timing
of activation function using
EM measurement on
oscilloscope.

!11

Timing Patterns of Various Activation Function

!12

Timing Patterns of Various Activation Function

!12

ReLU

Timing Patterns of Various Activation Function

!12

ReLU

Sigmoid

Timing Patterns of Various Activation Function

!12

ReLU

Sigmoid

tanh

Timing Patterns of Various Activation Function

!12

ReLU

Sigmoid

tanh

SoftMax

Recovering Weights

!13

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

First	byte	recovery		
(sign	and	7-bit	exponent)		

Second	byte	recovery		
(lsb	exponent	and	mantissa)		

Recovering Weights

!13

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

First	byte	recovery		
(sign	and	7-bit	exponent)		

Second	byte	recovery		
(lsb	exponent	and	mantissa)		

• Recovered	by	DEMA	
• Known	input,	secret	weight	
• Weights	in	IEEE	754	format	(32-bits)	
• Recovered	Weight	Precision=0.01

Recovering Number of Neurons & Layers

!14

One	hidden	layer	
6	neurons

Recovering Number of Neurons & Layers

!14

One	hidden	layer	
6	neurons

Two	hidden	layer	
(6,5)	neurons

Three	hidden	layer	
(6,5,5)	neurons

Recovering Number of Neurons & Layers

!14

One	hidden	layer	
6	neurons

Two	hidden	layer	
(6,5)	neurons

Three	hidden	layer	
(6,5,5)	neurons

DEMA	on	weights	used	to	determine		
layer	boundaries

Full Network Recovery

!15

Full Network Recovery

!15
Recovery	is	performed	layer	by	layer,	neuron	by	neuron.	

	One	neuron	at	a	time,	starting	from	input	layer

Results on ARM Cortex-M3

!16

Four	hidden	layer	
(50,30,20,50)	neurons

One	Neuron	in	3rd	hidden	layer		
20		multiplications,	1	ReLU

Results on ARM Cortex-M3

!16

Four	hidden	layer	
(50,30,20,50)	neurons

One	Neuron	in	3rd	hidden	layer		
20		multiplications,	1	ReLU

With	MNIST:	Accuracy	98.16%	(original)	vs	98.15%	(reverse	engineered)	
Average	weight	error:	0.0025.	

Extension to CNN on ARM Cortex-M3

• CIFAR-10 dataset.
• Target the multiplication operation

from the input with the weight,
similar as in previous experiments.

• fixed-point arithmetic (8-bits).
• The original accuracy of the CNN

equals 78.47% and the accuracy of
the recovered CNN is 78.11%.

!17

Conclusions
• With an appropriate combination of SEMA and DEMA techniques, all

sensitive parameters of the network can be recovered.
• A serious threat to commercial NN IPs
• The attack methodology scales linearly with the size of the network.
• The proposed attacks are both generic in nature and more powerful than the

previous works in this direction.
• Can be adapted for recovery of sensitive training/testing data
• SCA countermeasures (masking/hiding) would help but overhead will be too

high for NN. Motivates research for optimised countermeasures.

!18

Thank You !!!

Questions ???

!19

Full Network Recovery

!20

• The combination of previously developed individual techniques can thereafter
result in full reverse engineering of the network.

• Recovery is performed layer by layer, neuron by neuron, one at a time.
• Complexity grows linearly with network size.
• The first step is to recover the weight wL0 of each connection from the input layer

(L0) and the first hidden layer (L1).
• In order to determine the output of the sum of the multiplications, the number of

neurons in the layer must be known.
• Using the same set of traces, timing patterns for different inputs to the activation

function can be built.
• The same steps are repeated in the subsequent layers

Recovering Weights
• Correlation Power Analysis (CPA) i.e., a variant of DPA using the Pearson’s correlation

as a statistical test.
• CPA targets the multiplication m = x · w of a known input x with a secret weight w.
• Using the HW model, the adversary correlates the activity of the predicted output m for

all hypothesis of the weight, with side-channel trace t
• The correct value of the weight w will result in a higher correlation standing out from all

other wrong hypotheses w∗, given enough measurements.
• As data is represented in IEEE 754 format, each floating point number is 32 bits. 1

sign bit, 8 exponent bits and 23 mantissa bits
• Exact weight recovery is not required but only up to a precision (we choose 0.01)

!21

