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Machine Learning & Security
• Machine learning (ML) has wide applications 

across industries. 
• Security is just one popular application for ML 
• US$ 35 Billion Industry by 20241 
• Optimized ML model are Intellectual property 
• Leaked models can leak information about 

sensitive training sets
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1		https://www.marketwatch.com/press-release/artificial-intelligence-in-security-market-size-is-projected-to-be-around-us-35-billion-by-2024-2018-10-07
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This Work …
• Reverse Engineering
• Through Side-Channel
• Measured by Electromagnetic (EM) probes
• Of Deep Neural Network (DNN) on embedded devices
• To Recover:

– Number of layers
– Number of neurons in each layer
– Activation function in each neuron
– Input weights to each neuron
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Electromagnetic (EM) SCA
• Non-invasive
• Serious threat to pervasive computing
• Exploiting unintentional EM leakage
• Powerful & practical 

– Keeloq 
– FPGA Bitstream encryption 
– Bitcoin wallets

• Applications beyond secret key recovery
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Electromagnetic (EM) SCA
Simple EM Analysis (SEMA)
• Adversary learns secret information by 

visual inspection of (usually single) 
power/EM measurement 

• Ex: observe square & multiply in 
exponentiation etc.  

Differential EM Analysis (DEMA)
• Adversary extract secret information 

statistically from EM trace  
• Target leakage from function f(x,k)  of Secret 

k, input x  
• EM leakage ➔ L(f(x,k)) 
• Correct key k* maximizes: ⍴(t, L(f(x,k))) 
• Most commonly used leakage model L is 

Hamming Weight (HW) 
• A microcontroller leaks in Hamming Weight 

when sensitive data is loaded to pre-charged 
data bus
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Source:	https://anysilicon.com/side-channel-attacks-differential-power-analysis-dpa-simple-power-analysis-spa-works/



Adversary Model
• Recover the neural network architecture using only side-channel 

information 
• Adversary does not know the architecture of the used network but 

can feed random/known inputs to the DNN and capture 
corresponding electromagnetic side-channel traces 

• No assumption on the type of inputs; we work with real numbers  
• Assumption: Implementation of the machine learning algorithm with 

no side-channel countermeasures
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Experimental Setup
• Passive EM Measurement 
• Near-field probe 
• 30dB pre-amplifier for clear signal 
• Measurements averaged for noise filtering 
• For bigger networks, measurements are made 

sequentially for different layers 
• Targets: ATMEGA AVR328P, ARM Cortex-M3
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Lets Start With Some Visual 
Inspection!!!!
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Identifying Neurons
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• Activation Function in this case = Sigmoid 

!10



Identifying Neurons
• Simple EM Analysis 
• Hidden layer with 6 neurons = 6 repeating patterns  
• Each neuron executes a series of multiplication, followed by activation 
• Activation Function in this case = Sigmoid 

!10

1 2 3 4 5 6



Recovering Activation Function
• Timing Attack 
• Each activation function has 

distinct timing pattern 
• Timing patterns can be pre-

characterized for different 
NN libraries 

• We measure precise timing 
of activation function using 
EM measurement on 
oscilloscope.
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Recovering Weights
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• Recovered	by	DEMA	
• Known	input,	secret	weight	
• Weights	in	IEEE	754	format	(32-bits)	
• Recovered	Weight	Precision=0.01
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One	hidden	layer	
6	neurons

Two	hidden	layer	
(6,5)	neurons

Three	hidden	layer	
(6,5,5)	neurons

DEMA	on	weights	used	to	determine		
layer	boundaries
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Recovery	is	performed	layer	by	layer,	neuron	by	neuron.	

	One	neuron	at	a	time,	starting	from	input	layer



Results on ARM Cortex-M3
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Four	hidden	layer	
(50,30,20,50)	neurons

One	Neuron	in	3rd	hidden	layer		
20		multiplications,	1	ReLU

With	MNIST:	Accuracy	98.16%	(original)	vs	98.15%	(reverse	engineered)	
Average	weight	error:	0.0025.	



Extension to CNN on ARM Cortex-M3

• CIFAR-10 dataset.  
• Target the multiplication operation 

from the input with the weight, 
similar as in previous experiments.  

• fixed-point arithmetic (8-bits).  
• The original accuracy of the CNN 

equals 78.47% and the accuracy of 
the recovered CNN is 78.11%.
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Conclusions
• With an appropriate combination of SEMA and DEMA techniques, all 

sensitive parameters of the network can be recovered.  
• A serious threat to commercial NN IPs 
• The attack methodology scales linearly with the size of the network.  
• The proposed attacks are both generic in nature and more powerful than the 

previous works in this direction.  
• Can be adapted for recovery of sensitive training/testing data 
• SCA countermeasures (masking/hiding) would help but overhead will be too 

high for NN.  Motivates research for optimised countermeasures.
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Thank You !!!

Questions ???
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Full Network Recovery
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• The combination of previously developed individual techniques can thereafter 
result in full reverse engineering of the network. 

• Recovery is performed layer by layer, neuron by neuron, one at a time. 
• Complexity grows linearly with network size. 
• The first step is to recover the weight wL0 of each connection from the input layer 

(L0) and the first hidden layer (L1). 
• In order to determine the output of the sum of the multiplications, the number of 

neurons in the layer must be known.  
• Using the same set of traces, timing patterns for different inputs to the activation 

function can be built. 
• The same steps are repeated in the subsequent layers



Recovering Weights
• Correlation Power Analysis (CPA) i.e., a variant of DPA using the Pearson’s correlation 

as a statistical test.  
• CPA targets the multiplication m = x · w of a known input x with a secret weight w.  
• Using the HW model, the adversary correlates the activity of the predicted output m for 

all hypothesis of the weight, with side-channel trace t 
• The correct value of the weight w will result in a higher correlation standing out from all 

other wrong hypotheses w∗, given enough measurements.  
• As data is represented in IEEE 754 format, each floating point number is 32 bits. 1 

sign bit, 8 exponent bits and 23 mantissa bits 
• Exact weight recovery is not required but only up to a precision (we choose 0.01)
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