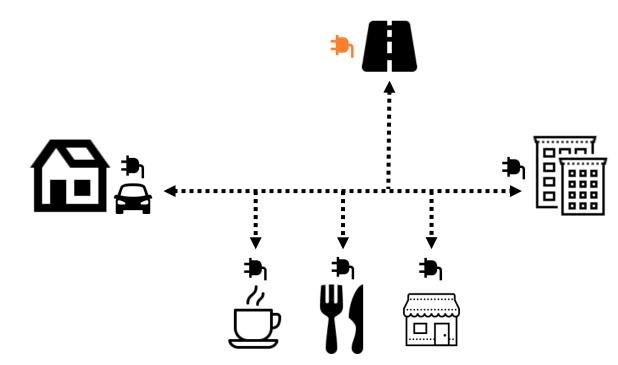
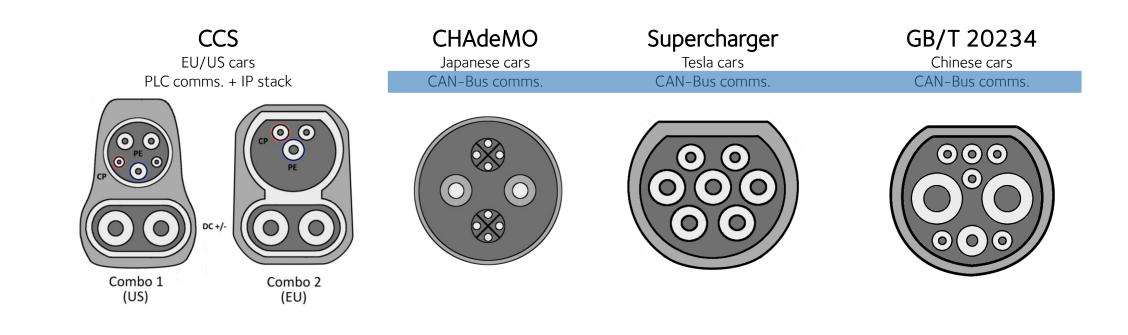
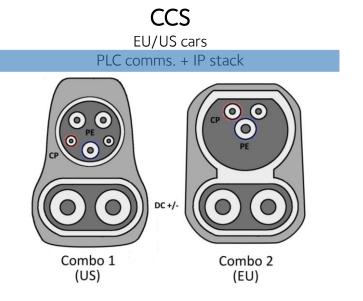

LOSING THE CAR KEYS Wireless PHY-Layer Insecurity in EV Charging

<u>Richard Baker</u> and Ivan Martinovic 14th August 2019 USENIX Security Symposium

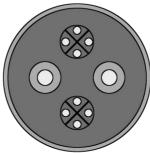


CHARGING EVERYWHERE

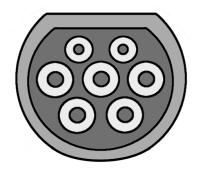

- Power is only one part of the story
- Deeper integration of charging
 - Reactive charging
 - Vehicle-to-grid
 - Automatic billing ("plug-and-charge")
 - Additional services on top
- All underpinned by communication
- Secure it early
 - Public/Widespread/Expensive to change
 - Previous work has found serious vulnerabilities in earlier chargers [1,2]


[1] Achim Friedland. Security and privacy in the current e-mobility charging infrastructure, 2016[2] Matthias Dalheimer, "Ladeinfrastruktur fr elektroautos: Ausbau statt sicherheit", 2017

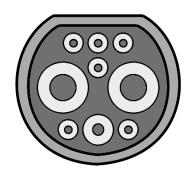
Four major dc standards



Four major dc standards

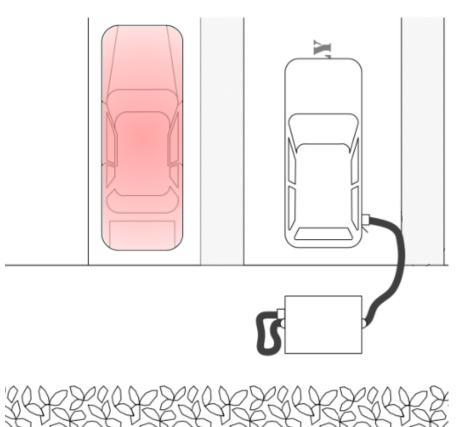


CHAdeMO


Japanese cars CAN-Bus comms.

Supercharger Tesla cars CAN-Bus comms.

GB/T 20234 Chinese cars CAN-Bus comms.


COMBINED CHARGING SYSTEM (CCS)

- Adapts a domestic PLC LAN technology for a new use
 - Shared-key private network model vs. public use case
 - Known to leak signal
- Supported by 7 of the top 10 car manufacturers worldwide [1]
 - About 7,500 chargers in Europe [2]
- Underpinned by DIN 70121 (CCS 1.0) and ISO 15118 (CCS 2.0)
 - Specs differ in support for advanced features
 - Specs match at a physical communications level

[1] OICA Production Rankings[2] http://ccs-map.eu/

THREAT MODEL

- Passive eavesdropping
- Wireless, despite wired system
 - no modification to vehicle, cable or charger
 - deniable as attack behaviour
- Located nearby, either:
 - ...in-person : waiting nearby and monitoring live
 - ...with planted device : collecting data for upload or later retrieval

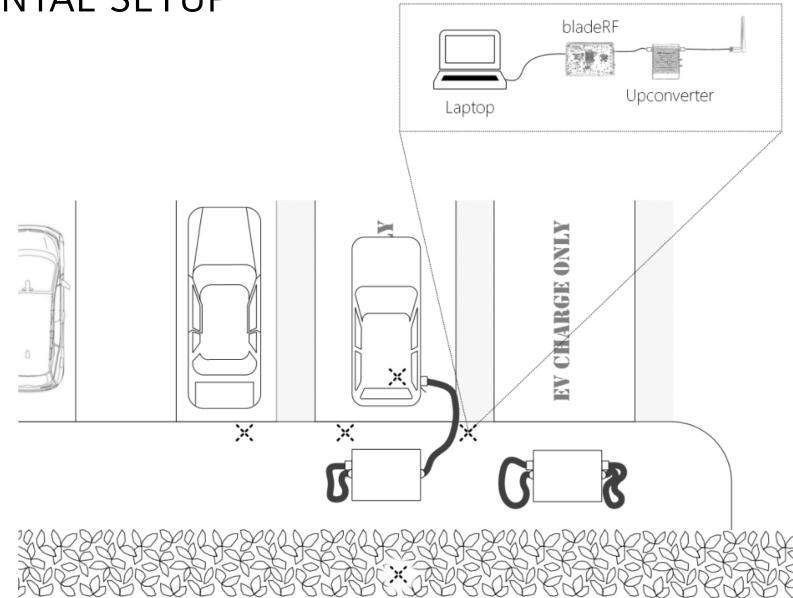
Why would someone do this?

Track people using vehicle MAC address

- Location privacy
- Monitor when homeowner leaves
- Detect specific makes/models
- Observe traffic on platform
 - Internet access as a service, Third-party apps
 - Others have reported SSH, Web management consoles, Telnet available on chargers [1]
- AutoCharge
 - Manufacturer-specific system for automated billing
 - Available at 90 locations across three European countries
 - Users associate vehicle MAC with their account and are billed automatically

- Three vehicles
 - All vehicles DIN 70121
- 800 miles of driving
- 14 locations, 6 charging networks
 - Service stations
 - Highway rest stops
 - Superstores
 - Hotels
- 54 unique charging sessions

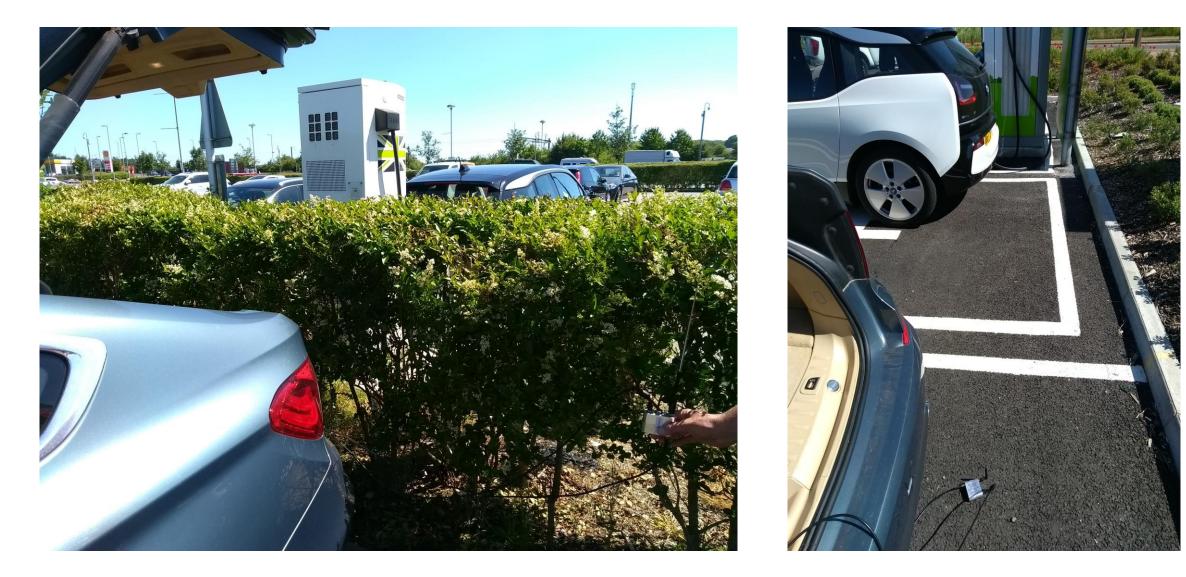
VW e-Golf



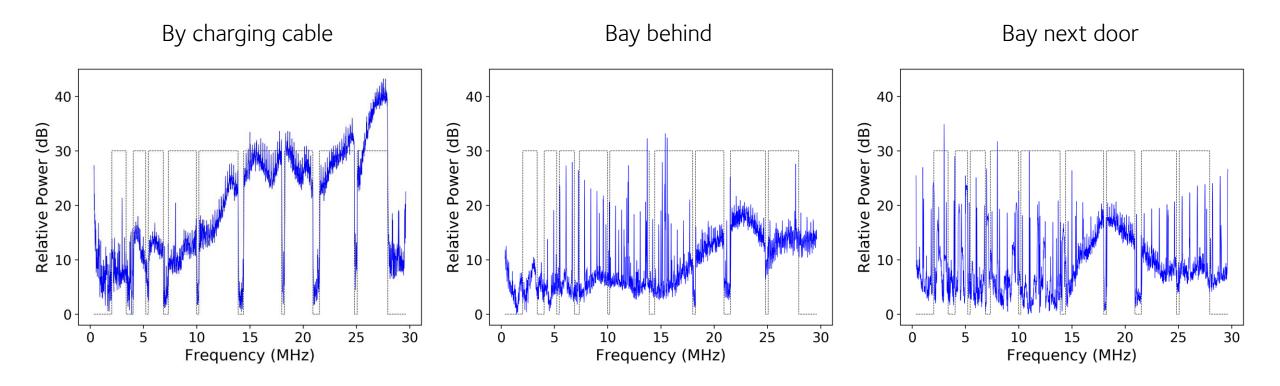
Jaguar I-PACE

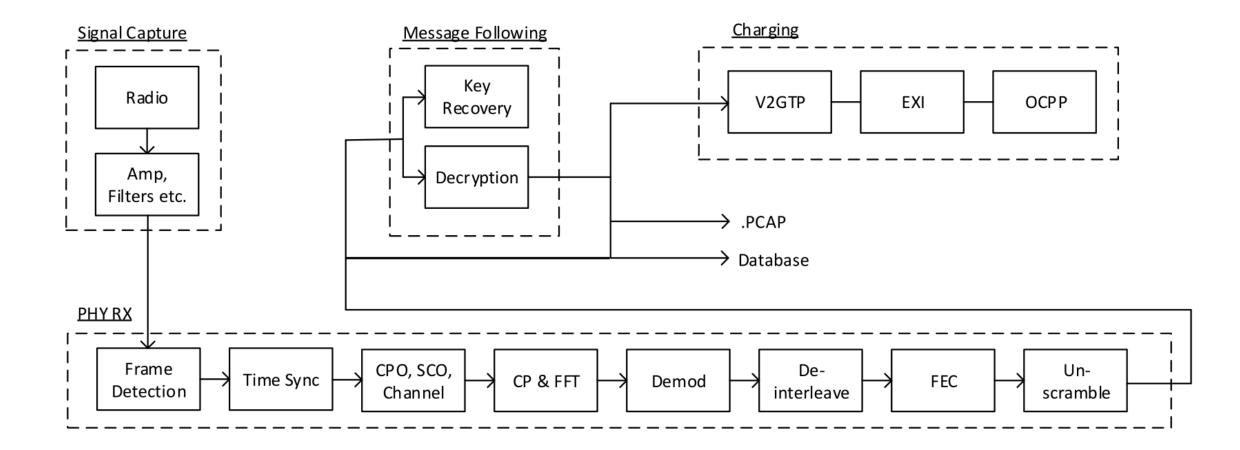
BMW i3

EXPERIMENTAL SETUP



CLOSE-RANGE


Further away


MULTIPLE VEHICLES AT ONCE

EMISSIONS AT EVERY SITE

EAVESDROPPING TOOL

Available at: https://gitlab.com/rbaker/hpgp-emis-rx

Message recovery

- Counted total packets
- Tested message CRC32 checksums
- Performance varied widely
 - Differences site-to-site
 - Differences run-to-run
- Closer is better
- Far from an optimal setup

Site	Antenna	Peak SNR	BW (MII-)	Total PPDUs	Data PPDUs	Bi-direc .?	Start?	RX%	Min	CRC329	
	-	(dB)	(MHz)					Mean	Min	Mean	Max
Α	In car	15	6	526	272	\checkmark		99.3	1.1	1.8	3.3
В	In car	18	12	1063	567	\checkmark		29.8	0.5	3.3	5.3
С	In car	25	14	2976	1819	\checkmark		99.9	46.6	48.1	50.3
D	In car	10	12	556	293	\checkmark		88.2	1.4	2.3	3.0
Е	In car	9	4.5	569	306			100	11.0	11.1	11.2
F	In car	21	12	3660	2009	\checkmark	\checkmark	99.3	27.8	36.8	45.8
	Bay behind	15	8	1434	1430	\checkmark		99.3	43.5	43.5	43.5
	Outside car	10	10	12987	8255	\checkmark		76.2	34.9	46.6	89.5
	Two cars	14	11	2449	2274			99.1	24.3	47.5	70.8
G	In car	19	12	5837	3670	\checkmark	\checkmark	99.0	51.1	60.3	71.4
	Next bay	15	13	4157	2749	\checkmark		99.7	91.8	91.8	91.8
	By cable	29	23	23984	17246	\checkmark	\checkmark	80.2	52.9	74.0	99.8
Н	In car	16	12.5	15052	9362	\checkmark		99.2	69.9	71.0	72.8
	Outside car	20	11	16243	10407	\checkmark		99.5	27.7	61.6	80.6
	By cable	35	25	19535	14717	\checkmark	\checkmark	92.1	34.2	70.0	92.8
	Two cars	15	12	24121	21006			99.6	42.2	71.9	94.8
Ι	In car	20	12	1501	1193	\checkmark	\checkmark	98.0	94.8	97.4	100.0
J	In car	20	7	14231	10291	\checkmark	\checkmark	81.0	1.0	33.6	67.9
	Outside car	23	7	1084	935	\checkmark	\checkmark	96.0	49.2	49.2	49.2
K	In car	8	5	1971	1278	\checkmark		92.5	0.0†	22.0	38.3
L	Outside car	8	7	3004	1849		\checkmark	25.8	0.0	0.0	0.0
Μ	In car	20	12	13631	9743	\checkmark	\checkmark	98.8	42.4	64.9	82.5
Ν	In car	24	14	4317	3364	\checkmark	\checkmark	68.3	0.0†	44.5	72.6

VALUES IN SESSION STARTUP

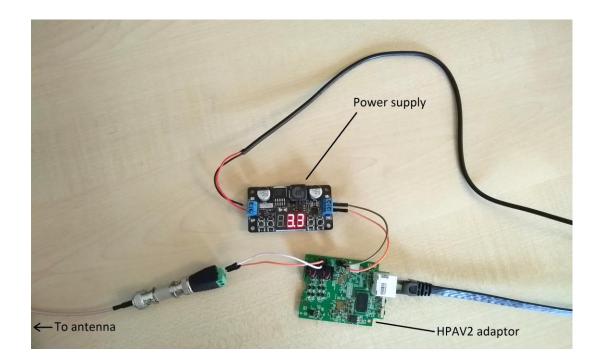
Vehicle MAC

- Unique per-vehicle
- Observed stable over 3 months
- In some cases derivable from other traffic too
- 'NMK' master key
 - Delivered in plaintext, according to standard

	sessionname	filenum	key	hex(val)
1	Dover-ByCable-20180626-PPDUs/file92_882_0.674888	882	MM_CM_SLAC_Parm_Req.sectype	00
2	Dover-ByCable-20180626-PPDUs/file92_882_0.674888	882	MM_CM_SLAC_Parm_Req.runid	000792E40051801C
3	Dover-ByCable-20180626-PPDUs/file92_884_0.675775	884	MM_CM_SLAC_Parm_Cnf.sectype	00
4	Dover-ByCable-20180626-PPDUs/file92_884_0.675775	884	MM_CM_SLAC_Parm_Cnf.runid	000792E40051801C
5	Dover-ByCable-20180626-PPDUs/file92_884_0.675775	884	MM_CM_SLAC_Parm_Cnf.ciphersuite	0000
6	Dover-ByCable-20180626-PPDUs/file92_959_0.715344	959	MM_CM_SLAC_Match.sectype	00
7	Dover-ByCable-20180626-PPDUs/file92_959_0.715344	959	MM_CM_SLAC_Match.pevmac	F07F0C
8	Dover-ByCable-20180626-PPDUs/file92_959_0.715344	959	MM_CM_SLAC_Match.evsemac	D88039
9	Dover-ByCable-20180626-PPDUs/file92_959_0.715344	959	MM_CM_SLAC_Match.nid	85E10050319D0D00
10	Dover-ByCable-20180626-PPDUs/file92_959_0.715344	959	MM_CM_SLAC_Match.nmk	1CBE4C23C65A3C3F26121D6D2138751A

PHY TRAFFIC RECOVERY

No.	Time	Source	Destination	Protocol	Length Info
	25 77.1942958	Leopold	Devolo	HomePlug AV	433 MAC Management, Get Key Request
	26 79.500895	Devolo_	Leopold	HomePlug AV	506 MAC Management, Unknown 0x6006
	27 79.501734	Devolo_	Leopold	HomePlug AV	435 MAC Management, Get Key Confirmation
	28 118.1830795	Devolo_	Leopold	HomePlug AV	60 MAC Management, Unknown 0x6063
	29 122.1872735	::	ff02::1	ICMPv6	78 Neighbor Solicitation for fe80::f27f:cff:
	30 133.1439733	Leopold	Devolo_	HomePlug AV	60 MAC Management, Unknown 0x6062
	31 134.1362364	Devolo_	Broadcast	HomePlug AV	60 MAC Management, Unknown 0x3a
	32 -138.974823	fe80::f27f:cff:fe02	ff02::1	UDP	72 60221 → 15118 Len=10
	33 140.1824598	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	UDP	90 15118 → 60221 Len=28
	34 141.1833232	fe80::f27f:cff:fe02	ff02::1:ffea:8438	ICMPv6	86 Neighbor Solicitation for fe80::da80:39ff: from f0:7f:0c:
	35 -142.1037701	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	ICMPv6	86 Neighbor Advertisement fe80::da80:39ff: (sol, ovr) is at d8:80:39:
E.	36 144.1754837	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	78 54164 → 53537 [SYN] Seq=0 Win=3232 Len=0 MSS=1432
	37 145.1412059	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	74 54164 → 53537 [ACK] Seq=1 Ack=1 Win=3232 Len=0
	38 146.820918	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	ТСР	78 53537 → 54164 [SYN, ACK] Seq=0 Ack=1 Win=2920 Len=0 MSS=1440
	39 -147.1023997	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	116 54164 → 53537 [PSH, ACK] Seq=1 Ack=1 Win=3232 Len=42
	40 149.1017369	fe80::f27f:cff:fe02	fe80::da80:39ff:fee…	ТСР	74 [TCP ACKed unseen segment] 54164 → 53537 [ACK] Seq=43 Ack=13 Win=3114 Len=0
	41 149.946826	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	ТСР	86 [TCP Spurious Retransmission] 53537 → 54164 [PSH, ACK] Seq=1 Ack=43 Win=2878 Len=12
	42 151.169177	fe80::f27f:cff:fe02	fe80::da80:39ff:fee…	ТСР	97 54164 → 53537 [PSH, ACK] Seq=43 Ack=13 Win=3232 Len=23
	43 151.586766	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	74 [TCP ACKed unseen segment] 54164 → 53537 [ACK] Seq=66 Ack=37 Win=3232 Len=0
	44 154.793437	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	ТСР	98 [TCP Spurious Retransmission] 53537 → 54164 [PSH, ACK] Seq=13 Ack=66 Win=2855 Len=24
	45 155.454001	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	98 54164 → 53537 [PSH, ACK] Seq=66 Ack=37 Win=3232 Len=24
	46 155.489335	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	74 [TCP ACKed unseen segment] 54164 \rightarrow 53537 [ACK] Seq=90 Ack=64 Win=3232 Len=0
	47 157.1630163	fe80::da80:39ff:fee…	fe80::f27f:cff:fe02	ТСР	101 [TCP Spurious Retransmission] 53537 → 54164 [PSH, ACK] Seq=37 Ack=90 Win=2831 Len=27
	48 159.1462902	fe80::f27f:cff:fe02	fe80::da80:39ff:fee	ТСР	98 54164 → 53537 [PSH, ACK] Seq=90 Ack=64 Win=3232 Len=24
	49 -159.640024	fe80::f27f:cff:fe02	fe80::da80:39ff:fee…	ТСР	74 [TCP ACKed unseen segment] 54164 → 53537 [ACK] Seq=114 Ack=86 Win=3232 Len=0


WHAT ABOUT OTHER ENCRYPTION?

None in DIN 70121

- Standard limits traffic to only charging control
- ISO 15118 includes complex security model
 - Purpose-built charging PKI
 - TLS mandatory for many use cases (inc. automated payment)
- No universal security provision
 - TLS usage varies by services, payment options and environment
 - Security measures for additional "value-added services" are out of scope [1]
 - Can just build additional services on the IP link

CAN IT BE DONE WITH CHEAP EQUIPMENT?

- Our SDR setup was ~\$1000 and very slow
- Some chipsets support a "Sniffer Mode"
 - Use a chipset that supports EV messages
 - A bit of hardware modification to connect an antenna
- Have successfully captured in-home PLC traffic at short range
- Cost ~\$35

- Wireless threat model for a wired system
- Security model is case-by-case
 - Hard to predict all the use cases rabid competition to be first
- Available persistent unique identifiers
- Informed all 7 tested manufacturers (received 3 responses)
- Future work on active attacks
 - PHY-layer
 - Protocol attacks

QUESTIONS?

richard.baker@cs.ox.ac.uk