
Razor: A Framework for

Post-deployment Software

Debloating

Chenxiong Qian, Hong Hu, Mansour Alharthi,

Pak Ho (Simon) Chung, Taesoo Kim, Wenke Lee

Software Is Getting Bigger

2

Li
ne

s
of

 C
od

e

Linux Kernel Version

5M

17.5M

Software Is Bloated
➢ Software contains dead code.

Avg: 73.01%

Quach et al. (FEAST’17) 3

Software Is Bloated
➢ Software contains code that is never used by users.

Avg: 20.96%

Quach et al. (FEAST’17) 4

Bloated Code Increases Attack Surface

➢ Example2: CVE-2014-0038
○ compat_sys_recvmmsg handles

recvmmsg system call for x32 ABI.
○ x32 ABI takes advantage of the 64-bit

environment while using 32-bit pointers
for less overhead.

5

➢ Example1: HeartBleed

○ No such programs exist in
real world!

○ X32 is enabled by default in
all major distributions like
Ubuntu!

○ TLS heartbeat extension.
○ Not used by most users.
○ Enabled in default.

Software Debloating
➢ All existing software debloating systems have the following limitations:

○ Require source code.

■ Source code is not always accessible to users.

■ It’s challenging and time-consuming to recompile source code.

○ Assume test cases are complete.

■ This assumption mostly fails in real world.

■ Impossible to provide complete test cases for a particular functionality.

6

Razor

➢ Performs code reduction for deployed binaries.

➢ Uses heuristics to infer related code for given test cases.

7

Overview

bloated
binary

test
cases

Tracer

Dynamorio

Intel PIN

Intel PT
execution

traces CFG

decode

Path Finder

Heuristic A

Heuristic B

...
CFG’

Generator

assembler

instrumenter

fault handler

debloated
binary

8

Razor

Tracer
➢ Multiple tracers

○ Software-based tracers (Dynamorio, Intel PIN)
■ Complete trace
■ Significant overhead

○ Hardware-based tracer (Intel PT)
■ Small overhead
■ Incomplete trace

○ Programs under different tracing environments show divergent paths.

➢ The collected trace contains three parts:

Executed Blocks
[0x4005c0, 0x4005f2]
[0x400596,0x4005ae]
...

Conditional Branches
[0x4004e3: true]
[0x4004ee: false]
[0x400614: true, false]
...

Indirect Calls/Jumps
[0x400677, 0x4005e6#18, 0x4005f6#6
...

9

Path Finder
➢ Four Heuristics

L1:
 cmp %rbx, %rax
 jge L3

L3:
 cmp %rcx, %rax
 jge L5

L5:
 test %rax, %rax
 jns L7

L7:
 test %rax, %rax
 jle L9

L9:
 mov %rax, %rdi
 call sqrtf@plt

L2:
 mov %rbx, %rax
 jmp L3

L4:
 mov %rcx, %rax
 jmp L5

L6:
 mov %rax, %rdi
 call L_abs1
 jmp L7

L8:
 mov %rax, %rdi
 call sqrt@plt
 jmp L9

T

F

T

T

T

F

F

F

L1:
 cmp %rbx, %rax
 jge L3

L3:
 cmp %rcx, %rax
 jge L5

L5:
 test %rax, %rax
 jns L7

L7:
 test %rax, %rax
 jle L9

L9:
 mov %rax, %rdi
 call sqrtf@plt

L2:
 mov %rbx, %rax
 jmp L3

F

T

T

T

10

T
zCode

○ zCode (zero code)
■ Only adds edges.

L4:
 mov %rcx, %rax
 jmp L5

F

zCall

○ zCall (zero call)
■ Call instructions are

disallowed.
L6:
 mov %rax, %rdi
 call L_abs1
 jmp L7

F

zLib

○ zLib (zero library call)
■ Non-executed library

calls are disallowed.

L8:
 mov %rax, %rdi
 call sqrt@plt
 jmp L9

F

zFunc

○ zFun (zero functionality)
■ Library calls with

different functionalities
are disallowed.

Generator
➢ Assembler

○ Disassembles the binary based on the expanded CFG.
○ Symbolizes basic blocks.

➢ Instrumenter
○ Concretizes targets of indirect calls/jumps.
○ Fixes callback function pointers.
○ Enforce allowed control-flows.

➢ Fault handler
○ Dumps call stacks and exits the execution.

➢ Rewriter
○ Compiles the instrumented assembly code to an object file.
○ Copies the code section into original binary.
○ Fixes exception handlers’ addresses in `.gcc_except_table` section.

11

Generator
➢ Assembler

○ Disassembles the binary based on the expanded CFG.
○ Symbolizes basic blocks.

➢ Instrumenter
○ Concretizes targets of indirect calls/jumps.
○ Fixes callback function pointers.
○ Enforces allowed control-flows.

➢ Fault handler
○ Dumps call stacks and exits the execution.

➢ Rewriter
○ Compiles the instrumented assembly code to an object file.
○ Copies the code section into original binary.
○ Fixes exception handlers’ addresses in `.gcc_except_table` section.

12

Generator
➢ Assembler

○ Disassembles the binary based on the expanded CFG.
○ Symbolizes basic blocks.

➢ Instrumenter
○ Concretizes targets of indirect calls/jumps.
○ Fixes callback function pointers.
○ Enforce allowed control-flows.

➢ Fault handler
○ Dumps call stacks and exits the execution.

➢ Rewriter
○ Compiles the instrumented assembly code to an object file.
○ Copies the code section into original binary.
○ Fixes exception handlers’ addresses in `.gcc_except_table` section.

13

Generator
➢ Assembler

○ Disassembles the binary based on the expanded CFG.
○ Symbolizes basic blocks.

➢ Instrumenter
○ Concretizes targets of indirect calls/jumps.
○ Fixes callback function pointers.
○ Enforce allowed control-flows.

➢ Fault handler
○ Dumps call stacks and exits the execution.

➢ Rewriter
○ Compiles the instrumented assembly code to an object file.
○ Copies the code section into original binary.
○ Fixes exception handlers’ addresses in `.gcc_except_table` section.

14

Code Reduction
➢ Comparing with Chisel

○ Basic blocks
■ Razor -- 78.8%, Chisel -- 83.4%

○ Instructions
■ Razor -- 61.9%, Chisel -- 85.1%

15

Functionality Validation

Program # of
Tests

Failed by Chisel Failed by
Razor

W I C M
bzip2 6 2 -- 2 -- -- (zLib)
chown 14 -- -- -- -- -- (zFunc)
date 50 5 -- 3 -- -- (zLib)
grep 26 -- -- -- 6 -- (zLib)
gzip 5 -- 1 -- -- -- (zLib)
mkdir 13 -- -- -- 1 -- (zLib)
rm 4 2 -- -- -- -- (zFunc)
sort 112 -- -- -- -- -- (zCall)
tar 26 3 -- -- 4 -- (zCall)
uniq 16 -- -- -- -- -- (zCall)

 W : Wrong operation
 I : Infinite loop
 C : Crash
 M : Missing output

16

➢ Run the debloated binaries on the same test cases.

Effectiveness of Heuristics

17

➢ Run the debloated binaries on the different test cases.

Security Benefits

Program CVE Orig Chisel Razor

bzip2
CVE-2010-0405 ✔
CVE-2008-1372 ✘ ✔
CVE-2005-1260 ✘ ✔

chown CVE-2017-18018* ✔ ✘ ✘

date CVE-2014-9471* ✔ ✘ ✔

grep CVE-2015-1345* ✔ ✘ ✘

CVE-2012-5667 ✘ ✔

gzip
CVE-2005-1228* ✔ ✘ ✘

CVE-2009-2624 ✔
CVE-2010-0001 ✔ ✘ ✘

mkdir CVE-2005-1039* ✔
rm CVE-2015-1865* ✔
tar CVE-2016-6321* ✔ ✘ ✔

 ✔ binary is vulnerable to the CVE.
 ✘ binary is not vulnerable to the CVE.
 * CVEs with * are evaluated by Chisel. 18

Runtime Overhead
➢ On average, Razor introduces 1.7% slowdown.

○ 15.8% overhead for perlbench

19

Real-world Software Debloating
➢ Firefox

○ Load top 50 Alexa websites.
○ Randomly pick 25 websites for debloating, and use the other 25 websites for testing.

➢ FoxitReader
○ Open and scroll 55 different PDF files.
○ Randomly pick 15 files for debloating, and use the other 40 files for testing.

Heuristic
Firefox FoxitReader

crash-sites code-reduction crash-PDFs code-reduction
none 13 67.6% 39 89.8%
zCode 13 68.0% 10 89.9%
zCall 2 63.1% 5 89.4%
zLib 0 60.1% 0 87.0%
zFunc 0 60.0% 0 87.0%

20

Real-world Software Debloating
➢ Use N-fold validation approach to apply zLib heuristic on Firefox.

○ Split Alexa’s top 50 websites into five groups.
○ Select two groups (20 websites) for debloating and use the other 30 for testing.

Group
ID

of Failed
Websites

Code
Reduction

Failed Websites

G01 1 59.3% wordpress.com
G02 0 59.3%
G03 1 59.3% wordpress.com
G04 1 59.3% twitch.tv
G12 1 59.3% wordpress.com
G13 1 59.5% wordpress.com
G14 2 59.5% twitch.tv, wordpress.com
G23 1 59.3% twitch.tv
G24 1 59.3% twitch.tv
G34 2 59.6% twitch.tv, wordpress.com

21

Per-site Browser Isolation
➢ Create minimal versions of web browsers for particular websites.

Type Website Code
Reduction

Heuristic Benefits

Banking

bankofamedica.com 69.4% zCall 6.3%
chase.com 69.6% zCall 6.5%
wellsfargo.com 68.8% zCall 5.7%
all-3 68.1% zCall 5.0%

E-commerce

amazon.com 71.4% none 3.8%
ebay.com 70.7% none 3.1%
ikea.com 70.6% none 3.0%
all-3 70.4% none 2.8%

Social Media

facebook.com 70.8% zCall 7.7%
instagram.com 71.6% zCall 8.5%
twitter.com 74.0% none 6.4%
all-3 71.8% none 4.2% 22

Summary

23

➢ Performs code reduction for deployed binaries.

➢ Uses heuristics to infer related code for given test cases.

Questions?

24

