Type Casting Verification:
Stopping an Emerging Attack Vector

Byoungyoung Lee, Chengyu Song,
Taesoo Kim, and Wenke Lee

Georgia Institute of Technology

Vulnerability Trends
- =

- -

100%

70%

60%

50%
40%
30%
20%
10%

H m

2006 2007 2008 2009 2010 2011 2012

Microsoft vulnerability trends (2013)
B stack overflow Use-after-free

Heap overflow - Bad casting (or type confusion)

Stack Overflows

100%

| e
oo — il
70%

60%

50%

40%
30%
20%
10%
¢ @

2006 2007 2008 2009 2010 2011 2012
Microsoft vulnerability trends (2013)

of Stack overflows is decreasing

Use-After-Free

of Use-after-free is increasing
=» Preventing Use-after-free with
Dangling Pointers Nullification [NDSS ’15] merig:éytrends (2013)

Bad-casting

100%

||
90% -

70% e

60%

50%

Bad-casting (or type confusion)
is still not solved.

0%

2006 2007 2008 2009 2010 2011 2012

Type Conversions in C++

* static_cast
— Compile-time conversions
— Fast: no extra verification in run-time
— No information on actually allocated types in runtime.

 dynamic_cast
— Run-time conversions
— Requires Runtime Type Information (RTTI)
— Slow: Extra verification by parsing RTTI
— Typically prohibited in performance critical applications

6

Upcasting and Downcasting

* Upcasting
— From a derived class to its parent class
* Downcasting

— From a parent class to one of its derived classes

Upcasting and Downcasting

* Upcasting
— From a derived class to its parent class
* Downcasting

— From a parent class to one of its derived classes

HTMLElement SVGElement

Upcasting and Downcasting

* Upcasting
— From a derived class to its parent class
* Downcasting

— From a parent class to one of its derived classes

HTMLElement SVGElement

Upcasting

Upcasting and Downcasting

* Upcasting
— From a derived class to its parent class
* Downcasting

— From a parent class to one of its derived classes

HTMLElement SVGElement

Downcasting

Upcasting

Upcasting and Downcasting

* Upcasting
— From a derived class to its parent class
* Downcasting
— From a parent class to one of its derived classes

HTMLElement SVGElement

Upcasting is always safe,

Downcasting

Upcasting

but downcasting is not!

Downcasting is not always safe!

class P { class D: public P {
virtual ~P() {} virtual ~D() {}
int m_P; int m_D;

5 };

Downcasting is not always safe!

class P { class D: public P {
virtual ~P() {} virtual ~D() {}
int m_P; int m_D;

5 5;

vftptr for P
intm_P

Access scope of P*

Downcasting is not always safe!

class P {
virtual ~P() {}
int m_P;

5

vftptr for P
intm_P

Access scope of P*

class D: public P {
virtual ~D() {}

int m_D;
Iy
A
vftptr for D
intm_P
intm_D v

Access scope of D*

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D;

Downcasting can be Bad-casting

Bad-casting occurs: D is not a sub-object of P
=» Undefined behavior

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static cast<D*>

Memory corruptions

Downcasting can be Bad-casting

vftptr for P
intm_P

P *pS = new P();
0D = static cast<D*>

Memory corruptions

Downcasting can be Bad-casting

&(pD->m_D)

vftptr for P
intm_P

P *pS = new P();
D *pD = static cast<D*>

Memory corruptions

Downcasting can be Bad-casting

&(pD->m_D)

vftptr for P

P *pS = NEw P(), intm_P
0D = static cast<D*> .

intm_D

Memory corruptions

Downcasting can be Bad-casting

&(pD->m_D)

vftptr for P

P *pS = NEw P(), intm_P
0D = static cast<D*> .

intm_D

Memory corruptions

https://upload.wikimedia.org/wikipedia/commons/1/1c/Flag_icon_red_4.svg

Real-world Exploits on Bad-casting
* CVE-2013-0912

— A bad-casting vulnerability in Chrome
— Used in 2013 Pwn20wn

ContainerNode

HTMLElement SVGElement

HTMLUnknownElement

10

Real-world Exploits on Bad-casting
* CVE-2013-0912

— A bad-casting vulnerability in Chrome
— Used in 2013 Pwn20wn

ContainerNode

HTMLElement SVGElement

HTMLUnknownElement

1. Allocated

10

Real-world Exploits on Bad-casting
* CVE-2013-0912

— A bad-casting vulnerability in Chrome
— Used in 2013 Pwn20wn

ContainerNode

HTMLElement SVGElement

2. Upcasting

HTMLUnknownElement

1. Allocated

10

Real-world Exploits on Bad-casting
* CVE-2013-0912

— A bad-casting vulnerability in Chrome
— Used in 2013 Pwn20wn

HTMLElement

2. Upcasting

SVGElement

HTMLUnknownElement

1. Allocated

10

Real-world Exploits on Bad-casting
* CVE-2013-0912

— A bad-casting vulnerability in Chrome
— Used in 2013 Pwn20wn

HTMLElement

HTMLUnknownElement

2. Upcasting

SVGElement

160 bytes

1. Allocated 96 bytes

10

Real-world Exploits on Bad-casting

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<>
EventTarget TreeShared<Node>
— =7
Node
N
ContainerNode
N

Element

HTMLElement _] PseudoElement VTTElement VTTElement

[

LabelableElement

HtmITableElement

HTMLRubyElement

HTMLFontElement

HTMLMenuElement 57 CIasses !

HTMLLabelElement

HTMLUnknownElement

11

Real-world Exploits on Bad-casting

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<>
EventTarget TreeShared<Node>
— =

Very complex class hierarchies

=» Error-prone type casting operations

LabelableElement

HtmITableElement

HTMLRubyElement

HTMLFontElement

HTMLMenuElement 57 CIasseS !

HTMLLabelElement

HTMLUnknownElement

11

Existing Solutions and Challenges

* Replace all static_cast into dynamic_cast

e dynamic_cast on a polymorphic class (with RTTI)
— A pointer points to a virtual function table pointer
— Traversing a virtual function table leads to RTTI

Offset to the top

&std::type_info A class name

1st virtual function

12

Existing Solutions and Challenges

* dynamic_cast on a non-polymorphic class
— A pointer points to the first member variable
— Simply traversing such a variable leads to a runtime crash

ptr 8

13

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

Existing Solutions and Challenges

* dynamic_cast on a non-polymorphic class
— A pointer points to the first member variable
— Simply traversing such a variable leads to a runtime crash

ptr 8

13

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

Existing Solutions and Challenges

* dynamic_cast on a non-polymorphic class
— A pointer points to the first member variable
— Simply traversing such a variable leads to a runtime crash

ptr 0

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

CaVer: CastVerifier

* (CaVer: CastVerifier

— A bad-casting detection tool

* Design goals
— Easy-to-deploy: no blacklists
— Reasonable runtime performance

14

Source
code

CaVer Overview

Emit THTable

Instrumentation

Compile

15

Source
code

CaVer Overview

Emit THTable

Instrumentation

Compile

Link

15

CaVer Overview

Emit THTable
Source + Secured
code : executable
Instrumentation

Compile

Link

15

Technical Goal of CaVer

P *ptr = new P;

static_cast<D*>(ntr);

Technical Goal of CaVer

P *ptr = new P;
Allocated

static_cast<D*>(ntr);

Technical Goal of CaVer

P *ptr = new P;
Allocated
static_cast<*>(n1r);
To be casted

16

Technical Goal of CaVer

P *ptr = new P;
Allocated
static_cast<*>(n1r);
To be casted

Object (P)

16

Technical Goal of CaVer

P *ptr = new P;
Allocated
static_cast<D*>(ptr);
To be casted

Q. What are the class

relationships b/w and ?
=» THTable

Object (P)

16

Technical Goal of CaVer

P *ptr = new P;
Allocated
static_cast<D*>(ptr);
To be casted

Q. What are the class
relationships b/w and ?
=» THTable

Object (P) Q. Is ptr pointsto or ?
=» Runtime type tracing

Type Hierarchy Table (THTable)

e A set of all legitimate classes to be converted
— Class names are hashed for fast comparison
— Hierarchies are to avoid recursive traversal

Type Hierarchy Table (THTable)

e A set of all legitimate classes to be converted
— Class names are hashed for fast comparison
— Hierarchies are unrolled to avoid recursive traversal

THTable (P) THTable (D)
Gash(“P"D
e

Hashed class names

17

Type Hierarchy Table (THTable)

e A set of all legitimate classes to be converted
— Class names are hashed for fast comparison
— Hierarchies are to avoid recursive traversal

Runtime Type Tracing

P *ptr = new P;

=)

P *ptr = new P;
trace(ptr,

18

Runtime Type Tracing

P *ptr = new P;

Object (P)

» P *ptr = new P;
trace(ptr, &THTable(P));

THTable (P)

18

Runtime Type Tracing

P *ptr = new P;

&THTable(P)

Object (P)

» P *ptr = new P;
trace(ptr, &THTable(P));

THTable (P)

18

Runtime Type Tracing

P *ptr = new P; » P *ptr = new P;
trace(ptr, &THTable(P));

THTable (P)

Maintain an internal mapping
from objects to metadata
Object (P) Heap: Alignhment based direct mapping
Stack: Per-thread red-black tree

Global : Per-process red-black tree

Runtime Type Tracing

P *ptr = new P; » P *ptr = new P;
trace(ptr, &THTable(P));

THTable (P)

Chashe)

Decoupled metadata

Object (P) =>» Overcome RTTI’s limitation

18

Runtime Type Verification

static_cast<D*>(ntr);

N

Runtime Type Verification

static_cast<D*>(n1r);

THTable (P)

Sfermamiemp—" eshte
{ B

Object (P)

19

Runtime Type Verification

static_cast<D*>(n1r);

To be casted

THTable (P)

Sfermamiemp—" eshte
B

-

Object (P) 1. Locate metadata associated
with the object

19

Runtime Type Verification

static_cast<D*>(n1r);

THTable (P)

,’

&THTable(P)
~

Object (p) 2. Locate associated THTable

19

Runtime Type Verification

static_cast<D*>(n1r);

THTable (P)
E l
N I

Object (P) 3. Enumerate THTable
and check if exists.

Runtime Type Verification

static_cast<D*>(n1r);

THTable (P)

Sfermamiemp—" eshte
{ B

Object (P) THTable() does not have
=» Bad-casting!

Performance Optimization

e Selective object tracing
— Not all objects are involved in downcasting
— Statically identify such objects, and skip tracing them

* Reusing verification results
— A verification process has to be the same for same class
— A verification result is cached for reuses

Implementation

* Based on LLVM Compiler suites
— Added 3,540 lines of C++ code

* Currently support Linux x86-64

e CaVer can be activated with one extra compiler flag

Evaluation

* How much efforts are required to deploy CaVer?

 How effective is CaVer in detecting bad-casting?

e What is the overall runtime overhead of CaVer?

Deployment Efforts

* Build configuration changes
— 21 and 10 lines were changed in Chromium and Firefox
— No blacklists are required

e CaVer successfully
— Build both browsers
— Run both browsers without runtime crashes

CaVer Report Example

== CaVer : Bad-casting detected
@SVGViewSpec.cpp:87:12
Casting an object of
from “

to o 1
Pointer 0x60c000008280

Alloc base 0x60c000008280
Offset 0x000000000000
THTable 0x7f7963aa20d0
#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56

1

CaVer Report Example

—= CaVer : Bad-casting detected Detailed casting information

@SVGViewSpec.cpp:87:12

Casting an object of
from “

to o

1

Pointer 0x60c000008280
Alloc base 0x60c000008280
Offset 0x000000000000
THTable Ox7f7963a2a20d0

#1 Ox7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56

CaVer Report Example

—= CaVer : Bad-casting detected Detailed casting information

@SVGViewSpec.cpp:87:12
Casting an object of

from “
to o

1

1

Pointer Ox60c000008280
Alloc base 0x60c000008280

Offset 0x000000000000
()% 96-23/0d(

1 1d0DIE
#1 Ox7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56

Runtime call stacks

New vulnherabilities

e CaVer discovered 11 new vulnerabilities

— 2 cases in Firefox (won bug bounty awards)
— 9 cases in GNU libstdc++
— All reported to and fixed by vendors

25

Runtime Overhead

) _ .
140% m Chromium
120% - @ Firefox
100% -

80% -
60% -
40% -

20% -

0% -
Octane SunSpider Dromaeo-JS Dromaeo-DOM

On average,

Chromium: 7.6%
Firefox: 64.6%

26

Applications of CaVer

* A back-end bug detection tool
* A runtime attack mitigation tool
— Limitations of previous mitigations techniques
* Focusing on certain attack methods
—e.g., CFl or ROP techniques

* Not effective if an exploit relies on other attack
methods

—e.g., non-control data attack
— CaVer tackles the root cause of bad-casintg.

Conclusions

* Proposed CaVer, a new runtime bad-casting
detection mechanism

* Discovered 11 new bad-casting vulnerabilities in
Firefox and libstdc++

Thank you!

