Scheduler-based Defenses against Cross-VM Side-channels

Venkat(anathan) Varadarajan,

Thomas Ristenpart, and Michael Swift

Public Clouds (EC2, Azure, Rackspace, ...)

Shared Resources and Isolation

Problem: Cache-based Side-channels*

Secret

Requirements for Successful Side-channel

Secret

Defenses against Side-channels

1. Sharing

- Resource Partitioning [NoHype'10]
- Specialized Hardware [RPcache'07]
- Software-based partitioning [StealthMem'12]

- Reduce resolution [TimeWarp'12]
- Removing timing channel [StopWatch'13]

3. Quick cross-VM preemptions

No prior work!

Our Solution: Soft Isolation

Allow sharing but limit frequency of dangerous VM interactions

VM

Hypervisor

Goals:

- 1. Secure: Controlled information leakage
- 2. Commodity: Easy to adopt
- 3. Efficient: Allow sharing, low overhead

Core

Private Caches

(per core state)

... with simple changes to Hypervisor's CPU scheduler

Rest of the talk ...

1. Background: Quick Preemptions & Schedulers

2. Soft-Isolation: Scheduler-based defense

3. Evaluation: Security and Performance

Requirement for Quick Preemptions

Rate of preemption > Rate of event to measure

Why do schedulers allow quick preemptions?

Prime-probe attacker:

Abuses BOOST priority, using interrupts.

Malicious VM

Soft-Isolation: Ratelimit Preemptions

Available in Xen (and KVM)

- ratelimit_us (and sched_min_granularity_ns)
- Reduces VM-switches → Boosts batch-workload's performance

Minimum RunTime (MRT) guarantee → soft-isolation

MRT Guarantee and Open Questions

1. Can MRT defend against Cross-VM Side-channels? (security evaluation)

Trade-off between security and performance?
 (performance overhead)

Experimental Methodology

Two VMs:

- 1. Attacker
- 2. Victim

Setting similar to public clouds (e.g. EC2)

Xen Configuration

Xen Version	4.2.1
Scheduler	Credit Scheduler 1
Configuration (Non-work conserving)	40% cap on DomU VCPUs with equal weight
# VMs	6
# VCPUs per VM	2

Machine Configuration

Machine	Intel Xeon E5645, 2.4GHz, 6 cores, single package
Memory Hierarchy	Private 32KB L1 (I- and D- Cache), 256KB unified L2, 12MB shared L3 & 16GB DDR3 RAM.

Security Evaluation: Prime-Probe Timing Profile

Security Evaluation: Prime-Probe Timing Profile

Security Evaluation: ElGamal Victim

ElGamal Side-channel require multiple preemptions within single iteration for noise-reduction [Zhang et al'12]


```
SQUAREMULT(x, e, N):
Let e_n, ..., e_1 be the bits of e
y \leftarrow 1

for i = n down to 1 do

y \leftarrow \text{SQUARE}(y)
y \leftarrow \text{ModReduce}(y, N)

if e_i = 1 then
y \leftarrow \text{Mult}(y, x)
y \leftarrow \text{ModReduce}(y, N)
end if
end tor
return y
```

MRT Guarantee and Open Questions

Performance Evaluation: Overall System Performance

Performance Evaluation: Overall System Performance

More details in the paper ...

- Per-core State-Cleansing
 - Interactive VMs may still leak information
 - MRT + State-cleansing incur low overhead

- Detailed Performance and Security Analysis
 - 20+ graphs in the paper

It is cheap and easy to deploy!

Conclusion

5ms MRT + selective state-cleansing

- known attacks no longer work
- negligible overhead
- easy to adopt

Introduce new scheduler principle

soft-isolation = allow sharing + limit dangerous cross-VM interactions

https://bitbucket.org/vvaradarajan/robsched
 contact: venkatv@cs.wisc.edu