Scheduler-based Defenses against
Cross-VM Side-channels

Venkat(anathan) Varadarajan,
Thomas Ristenpart,
and Michael Swift

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON
DEPARTMENT OF COMPUTER SCIENCES

Public Clouds (EC2,Azure, Rackspace, ...)

Multi-tenancy
Different customers’

virtual machines (VMs)
share same server

4]
Benefits:
1. High resource utilization,

&2' Low service cost

Shared Resources and Isolation

VM i VM) VM VM VM
(m-VCPUs) [¢] (m-VCPUs) [¢] (m-VCPUs) [(m-VCPUs) | ¢ | N EYeTE

Hypervisor
via per-core sharing

[Zhang et al’12, Ristenpart al’09]
Core Core core

Private Caches Private Caches Private C-.che-,

Branch Predictor . L . m’redictor
via system-level sharing
[Yarom & Falkner’14, Varadarajan et al’12]

System shared resources (LLC, memory, disk, n/w etc.)

Problem: Cache-based Side-channels™

Secret
Prime Probe CRYPTO_FUNCTION(S)?
| Core: [A I vV I A J s € secret bit
- >
= l T Time
— if (s =0) {
OPERATION A
= ~

I-cache

if(s=1){
OPERATION B

}

cache sets
Attacker Timing

Profile

{

Extract secret
information

< cache ways

v

*Zhang, Juels, Reiter, Ristenpart, “Cross-VM Side-channels ...”, CCS’12

Requirements for Successful Side-channel

Secret
Prime Probe CRYPTO_FUNCTION(S)?
| Core: [A I vV I A J s € secret bit
— >
2» l T Time
— —> if (s =0) {
OPERATION A
= ~

quick
preemption

if(s=1){
OPERATION B

}

shared
resource

Attacker Timing
Profile

high-precision) ﬁ

Extract secret
information

*Zhang, Juels, Reiter, Ristenpart, “Cross-VM Side-channels ...”, CCS’12

Defenses against Side-channels
1. Sharing

— Resource Partitioning [NoHype’10]

— Specialized Hardware [RPcache’07]

— Software-based partitioning [StealthMem’12] @
2. Access to high-resolution timers
— Reduce resolution [TimeWarp’12]

— Removing timing channel [Stopwatch’13]

No countermeasures deployed by providers!

3. Quick cross-VM preemptions
— No prior work!

Our Solution: Soft Isolation

Allow sharing but limit frequency of
dangerous VM interactions

Goals:
1. Secure: Controlled information leakage Core
2. Commodity: Easy to adopt Private Caches

3. Efficient: Allow sharing, low overhead (per core state)

... With simple changes to Hypervisor’s CPU scheduler

7

Rest of the talk ...

1. Background: Quick Preemptions & Schedulers
2. Soft-Isolation: Scheduler-based defense

3. Evaluation: Security and Performance

Requirement for Quick Preemptions

Prime Probe

CRYPTO FUNCTION(S):
s € secret bit

Time if (s=0){
OPERATION_A

Preemption 1

Interval if(s=1) {
OPERATION B

cache sets

Next subsequent code/task
execution ... (or noise)

Rate of preemption > Rate of event to measure

Why do schedulers allow quick
preemptions!?

Benefits from longer
scheduler timeslices

Throughput-
oriented:
>

Batch VMs

Prime-probe attacker:
Abuses BOOST
priority, using
interrupts.

Malicious
VM

Interactive VMs

t t

State-of-art
CPU schedulers

Latency-oriented:
Benefits from quick
wakeups,

> BOOST priority

Core: V‘A V| A
A

!

l, T Ti:1e

€«

10

Soft-Isolation: Ratelimit Preemptions

Core: VvV Vv @

>

T l, T Time
Interrupt
(boosted)

<€ >
Min. runtime

(scheduler parameter)

Available in Xen (and KVM)

* ratelimit us (and sched min granularity ns)
* Reduces VM-switches = Boosts batch-workload’s performance

Minimum RunTime (MRT) guarantee = soft-isolation

11

MRT Guarantee and Open Questions

1.] Can MRT defend against
MRT value - Cross-VM Side-channels?

< / (security evaluation)
Core: Vv @ \
s lime

| PN l 2. Trade-off between security
delay —> and performance?
(performance overhead)

12

Experimental Methodology

Two VMs: VM
1. Attacker VM

2. Hypervisor
Core
Xen Configuration

Machine Configuration
m

Setting similar to public clouds (e.g. EC2)

Intel Xeon E5645, 2.4GHz, 6

Scheduler Credit Scheduler 1 cores, single package
Configuration . 40% cap on DomU. VCPUs Memory Private 32KB L1 (I- and D-
(Non-work conserving) with equal weight Hierarchy Cache), 256KB unified L2,
VMs 6 12MB shared L3 & 16GB
DDR3 RAM.

VCPUs per VM 2

13

Sample probe (time series)

9000

0

i-cache access timing

20

Security Evaluation :
Prime-Probe Timing Profile

40 60 80 100

|-cache set number

Idle Victim VM

120

Alternating usage pattern

0 20 40 60 80 100 120

|-cache set number

Simple Victim VM
Under Zero-MRT

Cache Timing per iCache set probe

(0 to 200 cycle range)

14

Sample probe (time series)

1000p

9800

9600

9400

9200

9000

0

Security Evaluation :
Prime-Probe Timing Profile

Side-channel not discernible

20 40 60 80 100

|-cache set number

120

Simple Victim VM
Under 1ms MRT

Alternating usage pattern

0 20 40 60 80 100 120

|-cache set number

Simple Victim VM
Under Zero-MRT

Cache Timing per iCache set probe

(0 to 200 cycle range)

15

Security Evaluation:
ElGamal Victim

ElGamal Side-channel require multiple preemptions within
single iteration for noise-reduction [zhang et al’12]

800
700
600
500
400
300
200

100

Minimum number of iterations per preemption

728
386
.) 1
Avg: 0.096 ops 155
4
0 | | - | . | | |
0 0.1 0.5 1 2 5 10

Xen MRT (ms)

SQUAREMULT(X, e, N):
Lete,, ..., ¢, be the bits of e
y«1
for 1=n down to 1 do
y <— SQUARE(Y)
y «— MODREDUCE(y, N)
if e, = 1 then
y «— MULT(y, X)
y «— MODREDUCE(y, N)
end if
end 1or
return y

16

MRT Guarantee and Open Questions

1. Can MRT defend against
Cross-VM Side-channels?
(security evaluation)

Core: VvV @ VvV
s lime

| PN l 2. Trade-off between security
delay —> and performance?
(performance overhead)

17

Performance Evaluation:
Overall System Performance

Measured workload: *\
1. Interactive 2 memcached,

cassandra, etc. and
2. Batch > graph500, spec)BB, etc.

workload-mix

Competing workloads: P —
microbenchmarks = highly
cache-thrashing + (interactive or batch)

Core Core
Core Core

18

Normalized to Zero-MRT

0O o000
oON DO ®

Performance Evaluation:

Overall System Performance

===
_ N> O 00N

W All-Batch MW All-Interactive ¥ Interactive-Batch ™ [dle

At 5ms MRT

<7%

overhead

Avg. 95t Percentile Latency Avg. Runtime
(interactive workloads) (batch workloads) 19

More details in the paper ...

* Per-core State-Cleansing
— Interactive VMs may still leak information
— MRT + State-cleansing incur low overhead

* Detailed Performance and Security Analysis
— 20+ graphs in the paper

It is cheap and easy to deploy!

20

Conclusion

5ms MRT + selective state-cleansing
— known attacks no longer work

— negligible overhead

— easy to adopt

Introduce new scheduler principle

— soft-isolation = allow sharing + limit dangerous
cross-VM interactions

https://bitbucket.org/vvaradarajan/robsched
contact: venkatv@cs.wisc.edu

21

