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Where did computers come from? 

!  Much early development motivated by 
security applications: 
!  Breaking codes 
!  Developing new weapons 
!  Computing ballistic trajectories 

!  But securing the computers was not an 
issue: big, physically isolated, unshared 
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What have we learned? 

!  Many good concepts relating security and 
operating system architecture 
!  Access control matrix 
!  Reference monitor model 
!  Virtual machine models 
!  … 

!  How hard some things are 
!  Security policy and specification 
!  Security management 
!  Effective user interfaces 
!  Covert channel elimination 
!  Technology transfer! 



What do we still not know? 

!  Following is just a sampling of 
problems – there are lots more 
out there 

!  There are areas of overlap among 
these problems 



 How to avoid building security 
flaws into programs 

•  What’s the problem? 
•  We keep building programs and despite best efforts, security 

flaws turn up in them later 
•  Policy specification is part of the problem: no policy" “no flaw” 

•  What do we know?  
•  General software and system engineering techniques 
•  Some collections of documented security flaws, organized in 

various ways, dating back to mid 1970’s 
•  Some tactics for dealing with specific kinds of flaws 

•  Buffer overflows 
•  Type violations 
•  Code scanning for suspicious constructions 

•  Where are we going? 
•  More, better type enforcement: PCC, IRM 
•  More, better code scanning 



How to know when a system has 
been penetrated 

•  What’s the problem? 
•  Intruders can masquerade as legitimate users 
•  Malicious code can be inserted early in the life cycle 

•  What do we know? 
•  How to detect attacks that have already been identified 
•  How to generate lots of false positives 

•  Where are we going? 
•  Trying to bring more information sources to bear to reduce 

false positives 
•  Some efforts to distinguish normal and abnormal behaviors 

" need to have a model of what’s normal 



 How to design systems that 
can tolerate intrusions 

•  What’s the problem? 
•  If we can’t avoid flaws or identify intrusions, can we build 

systems that work anyway?  
•  Must deal with malicious faults, which cannot be assumed to 

be uncorrelated 

•  What do we know? 
•  Fault tolerance techniques: redundancy, masking, diversity, 

no single points of failure 
•  Some results from group membership protocols that deal 

with intruders 

•  Where are we going? 
•  Efforts underway to explore a variety of techniques and 

approaches under DARPA OASIS program 



How to design systems with 
manageable security 

•  What’s the problem? 
•  Built in security controls are misconfigured, 

leaving vulnerabilities exposed 
•  Most systems are not so much designed as 

patched together 
•  What do we know? 

•  Humans don’t deal well with complex interfaces, 
and security is rarely “Job 1” 

•  Some principles for design of user interfaces 
•  Where are we going? 

•  More automated procedures for installing patches 



How to provide reasonable 
protection of intellectual property 

•  What’s the problem? 
•  Owners seem to want “Mission Impossible” tapes: 

read once bits 
•  Mechanisms pretend to be strong but are usually 

weak: DVD, e-Book, etc. 
•  How to protect “cleartext” or provide “fair use” 

•  What do we know? 
•  Encryption techniques, label-based techniques 
•  Watermarking, steganography 

•  Where are we going? 
•  Legal enforcement 



How to support privacy 
enforcement technically 

•  What’s the problem? 
•  Privacy generally imposes constraints on information flows 

and linkages 
•  Suitable mechanisms for flexible enforcement  
•  Policy also lacking 

•  What do we know? 
•  Conventional auditing techniques 
•  Watermarking 

•  Where are we going? 
!  Healthcare information as case in point 
!  Policies may specify authorized/unauthorized linkages of 

private information 
!  Technology needed to reveal source of linkage, or provide 
“one-way” links 



How to get trustworthy computations 
from untrusted platforms 

•  What’s the problem? 
•  Most platforms are untrustworthy, yet we need to rely on 

their computations 
•  May want to hide the computation from the platform doing 

the computing 

•  What do we know? 
•  Some people are willing to donate computing time 

SETI@home, Distributed.net, Cosm, (Legion?)… 
•  Some computations can be checked quickly 

•  Where are we going? 
•  Mobile code techniques are beginning to be explored 
•  Some restricted classes of functions identified 



How to prevent/withstand denial 
of service attacks 

•  What’s the problem? 
•  Attackers can exhaust system resources without 

effective penalty 

•  What do we know? 
•  If you’re big enough it may not matter: Google 

•  But it might: Yahoo! 

•  Where are we going?   
•  Some QoS work may help 
•  Policy might help (Charge for bits? Liability?) 



How to quantify security tradeoffs 

•  What’s the problem? 
•  Security imposes costs of various sorts 

•  Extra mechanism, delay, etc. 
•  Precise costs, and quantifiable benefits hard to find 

•  Hard to develop rational system designs 

•  What do we know? 
•  Tolerating N Byzantine Failures requires 3N+1 processors 

and many messages 

•  Where are we going? 
•  Recent results (Castro, Liskov) beginning to show practical 

Byzantine Fault Tolerance 
•  Work on tradeoffs of FRS schemes by Ganger and others at 

CMU 



How to reveal / minimize assumptions 
in security system designs 

•  What’s the problem? 
•  Assumptions are often vulnerabilities 

•  What do we know? 
•  Attackers will try to violate some system assumption 

•  Kocher: differential power analysis 
•  Power consumption can leak key information 

•  Assumptions can be hidden in plain sight 
•  Needham/Schroeder protocol:  

•  assumed no old key compromised 

•  Where are we going?  
•  Incremental progress 
•  Analytic methods (e.g., protocol analysis) 



How to build programs/systems 
and know what they do 

•  The ultimate problem:  
•  Be able to design and build a system 

and forecast its behavior under 
specified conditions, including 
categories of attacks 

•  Demands not only correctness, 
composition, but modeling and 
simulation 



Backup 
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Information Assurance Definition 

Information Assurance:  
!  Information operations (IO) that protect and 

defend information and information systems 
(IS) by ensuring their availability, integrity, 
authentication, confidentiality, and 
nonrepudiation. This includes providing for 
restoration of information systems by 
incorporating protection, detection, and 
reaction capabilities. — National Information Systems 
Security (INFOSEC) Glossary, NSTISSI No. 4009, January 1999 


