
Ten Unsolved Problems in
Information Assurance

Carl E. Landwehr
Senior Fellow

Mitretek Systems
14 Sept. 2001

Where did computers come from?

!  Much early development motivated by
security applications:
!  Breaking codes
!  Developing new weapons
!  Computing ballistic trajectories

!  But securing the computers was not an
issue: big, physically isolated, unshared

A little history of computer security

Ware Rept

Anderson Rept:
Reference

Monitor Concept

“Penetrate and Patch”
Period

Security Kernel
Experimentation

MULTICS
AFDSC

MULTICS (AIM)

SCOMP
 KSOS

NCSC
Founded

Orange Book
Published:

TCB Concept

First
Evaluations
Completed

TNI
Published

TDI
Published

Federal Crit.
First Draft

ADEPT-50

Timesharing
Demonstrated

1970 1980 1990

TCSEC Product
Development

RISOS,
PAP Projects

Security
Profiling

DEC
VMM

Sec Kernel

Common Crit.
First Draft

V. 1.0

2000

Common Crit.
Int. Std.

Common Criteria

Security model genealogy

Access Control Models Information Flow Models

High Water Mark Access Matrix

HRU

Take-
Grant

Schematic
Protection

Denning/Walter- Lattice

Strong Dependency

Non-Interference

Bell-LaPadula1

Bell-LaPadula2 Non-Deducibilty

Generalized N-I

Restrictiveness

Integrity –
Biba

Clark - Wilson
RBAC

SMMS

Feiertag FM

Typed AM

Application-oriented models

?

What have we learned?

!  Many good concepts relating security and
operating system architecture
!  Access control matrix
!  Reference monitor model
!  Virtual machine models
!  …

!  How hard some things are
!  Security policy and specification
!  Security management
!  Effective user interfaces
!  Covert channel elimination
!  Technology transfer!

What do we still not know?

!  Following is just a sampling of
problems – there are lots more
out there

!  There are areas of overlap among
these problems

 How to avoid building security
flaws into programs

•  What’s the problem?
•  We keep building programs and despite best efforts, security

flaws turn up in them later
•  Policy specification is part of the problem: no policy" “no flaw”

•  What do we know?
•  General software and system engineering techniques
•  Some collections of documented security flaws, organized in

various ways, dating back to mid 1970’s
•  Some tactics for dealing with specific kinds of flaws

•  Buffer overflows
•  Type violations
•  Code scanning for suspicious constructions

•  Where are we going?
•  More, better type enforcement: PCC, IRM
•  More, better code scanning

How to know when a system has
been penetrated

•  What’s the problem?
•  Intruders can masquerade as legitimate users
•  Malicious code can be inserted early in the life cycle

•  What do we know?
•  How to detect attacks that have already been identified
•  How to generate lots of false positives

•  Where are we going?
•  Trying to bring more information sources to bear to reduce

false positives
•  Some efforts to distinguish normal and abnormal behaviors

" need to have a model of what’s normal

 How to design systems that
can tolerate intrusions

•  What’s the problem?
•  If we can’t avoid flaws or identify intrusions, can we build

systems that work anyway?
•  Must deal with malicious faults, which cannot be assumed to

be uncorrelated

•  What do we know?
•  Fault tolerance techniques: redundancy, masking, diversity,

no single points of failure
•  Some results from group membership protocols that deal

with intruders

•  Where are we going?
•  Efforts underway to explore a variety of techniques and

approaches under DARPA OASIS program

How to design systems with
manageable security

•  What’s the problem?
•  Built in security controls are misconfigured,

leaving vulnerabilities exposed
•  Most systems are not so much designed as

patched together
•  What do we know?

•  Humans don’t deal well with complex interfaces,
and security is rarely “Job 1”

•  Some principles for design of user interfaces
•  Where are we going?

•  More automated procedures for installing patches

How to provide reasonable
protection of intellectual property

•  What’s the problem?
•  Owners seem to want “Mission Impossible” tapes:

read once bits
•  Mechanisms pretend to be strong but are usually

weak: DVD, e-Book, etc.
•  How to protect “cleartext” or provide “fair use”

•  What do we know?
•  Encryption techniques, label-based techniques
•  Watermarking, steganography

•  Where are we going?
•  Legal enforcement

How to support privacy
enforcement technically

•  What’s the problem?
•  Privacy generally imposes constraints on information flows

and linkages
•  Suitable mechanisms for flexible enforcement
•  Policy also lacking

•  What do we know?
•  Conventional auditing techniques
•  Watermarking

•  Where are we going?
!  Healthcare information as case in point
!  Policies may specify authorized/unauthorized linkages of

private information
!  Technology needed to reveal source of linkage, or provide
“one-way” links

How to get trustworthy computations
from untrusted platforms

•  What’s the problem?
•  Most platforms are untrustworthy, yet we need to rely on

their computations
•  May want to hide the computation from the platform doing

the computing

•  What do we know?
•  Some people are willing to donate computing time

SETI@home, Distributed.net, Cosm, (Legion?)…
•  Some computations can be checked quickly

•  Where are we going?
•  Mobile code techniques are beginning to be explored
•  Some restricted classes of functions identified

How to prevent/withstand denial
of service attacks

•  What’s the problem?
•  Attackers can exhaust system resources without

effective penalty

•  What do we know?
•  If you’re big enough it may not matter: Google

•  But it might: Yahoo!

•  Where are we going?
•  Some QoS work may help
•  Policy might help (Charge for bits? Liability?)

How to quantify security tradeoffs

•  What’s the problem?
•  Security imposes costs of various sorts

•  Extra mechanism, delay, etc.
•  Precise costs, and quantifiable benefits hard to find

•  Hard to develop rational system designs

•  What do we know?
•  Tolerating N Byzantine Failures requires 3N+1 processors

and many messages

•  Where are we going?
•  Recent results (Castro, Liskov) beginning to show practical

Byzantine Fault Tolerance
•  Work on tradeoffs of FRS schemes by Ganger and others at

CMU

How to reveal / minimize assumptions
in security system designs

•  What’s the problem?
•  Assumptions are often vulnerabilities

•  What do we know?
•  Attackers will try to violate some system assumption

•  Kocher: differential power analysis
•  Power consumption can leak key information

•  Assumptions can be hidden in plain sight
•  Needham/Schroeder protocol:

•  assumed no old key compromised

•  Where are we going?
•  Incremental progress
•  Analytic methods (e.g., protocol analysis)

How to build programs/systems
and know what they do

•  The ultimate problem:
•  Be able to design and build a system

and forecast its behavior under
specified conditions, including
categories of attacks

•  Demands not only correctness,
composition, but modeling and
simulation

Backup

 COMPUSEC History

Ware Rept

Anderson Rept:
Reference

Monitor Concept

“Penetrate and Patch”
Period

Security Kernel
Experimentation

MULTICS
AFDSC

MULTICS (AIM)

SCOMP
 KSOS

NCSC
Founded

Orange Book
Published:

TCB Concept

First
Evaluations
Completed

TNI
Published

TDI
Published

Federal Crit.
First Draft

ADEPT-50

Timesharing
Demonstrated

1970 1980 1990

TCSEC Product Development

RISOS,
PAP Projects

Security
Profiling

DEC
VMM

Sec Kernel

Toward MLS Computing Service
Large Centralized
Timesharing

Workstation - based
Client - Server,
LAN / WAN

MULTICS/GE645
 TSS/IBM 360/67
 TENEX/ PDP-10+

AFDSC
MULTICS
(AIM) SCOMP

ADEPT-50

Dominant Architectures
Medium Centralized
Timesharing plus
Networks

Research/Commercial Examples

MLS Community Examples

Unix/PDP-7++
 Tandem

Arpanet
Networks

Ethernet

Trusted
Xenix

CMW
Proto./Products

BSD Unix MACH

Verdix LAN

SAT LOCK
DTMACH PSOS

Woods
Hole Study

Multinet Gateway

MS/DOS/
IBM PC Macintosh

UCLA
DSU

KSOS

Boeing LAN

DSS

Synergy
TMACH

Sun

1970 1980 1990

OS

Networks

Database

 OS/Hardware

SeaViews
SINTRA SDDS

LDV

Internet

DEC
SKVAX

An Incomplete History 	

Floyd
67

Automated Theorem
Proving

Knuth
Literate Prog.
86

Program
Verification

Hoare
69

Dijkstra
T.H.E. 68

Boyer-
Moore 71

UT / CLINC:
GVE 74 / ROSE 88 IP Sharp ORA-Canada:

 mEVES-mVerdi 83
 EVES -Verdi 87

SDVS 77

ORA-US:
Romulus (Ulyssess)84?
Penelope86/CLIO

Programming
Methodology

Dijkstra
Disc. of
Prog -76

SRI: SPECIAL- HDM 76/ EHDM 83 / PVS 90?

SDC/Burroughs/Unisys:
Ina-Jo / FDM

ISI, GE, RPI:
XIVUS / AFFIRM 76

Bledsoe London

Gries
Sci. of Prog
81

Parnas
Info. Hiding
72

Struct. Pgming -
DD&H - 72

Hoare
CSP 78 - 85

LCF 77

Larch 80

IPV-
PARC
73

HOL 85

Sufrin Z
84

Balzac
91

Raise
85

Security
Modeling &
Theory

1970 1980 1990
HWM-
ADEPT-50 Ware

Rept

Anderson
Rept -
Ref Monitor

Bell-
LaPadula

Denning
Lattice

Feiertag
B-L / KSOS

Goguen.-
Meseguer
Non-
Interference

Walter
et al

Sutherland

McCullough
Hook-up

McLean
System Z

McCullough
Restrictiveness

Gray
Probabilistic
N-I

Clark
Wilson

Towards Secure DBMS

Large Centralized
Timesharing

Workstation - based
Client - Server,
LAN / WAN

Dominant Architectures
Medium Centralized
Timesharing plus
Networks

Research

Arpanet Ethernet

Woods
Hole Study
 - integrity lock
 - replication
 - view-based sec.

1970 1980 1990

SeaViews

SINTRA

SD-DBMS
LDV

Internet

Commercial

Hinke-
Schaefer

Codd

SWORD

T-Oracle 7
T-Rubix

Sybase S-SQL
Informix OLS

Network Technology

TRUDATA/SQLSentry
MUSET

Ware Rept
Anderson Rept:
Ref. Monitor

NCSC
TCSEC:
TCB Concept

TNI TDI First TDI
Eval. Done

IFIP
WG11.3

World
Wide
Web

Integ.Lock Proto.

Information Assurance Definition

Information Assurance:
!  Information operations (IO) that protect and

defend information and information systems
(IS) by ensuring their availability, integrity,
authentication, confidentiality, and
nonrepudiation. This includes providing for
restoration of information systems by
incorporating protection, detection, and
reaction capabilities. — National Information Systems
Security (INFOSEC) Glossary, NSTISSI No. 4009, January 1999

