MetaSymploit:
Day-One Defense Against Script-based Attacks
with Security-Enhanced Symbolic Analysis

Ruowen Wang', Peng Ning', Tao Xie?, Quan Chen’
'North Carolina State University
2University of lllinois at Urbana—Champaign

Lomputer dcience

Background

ACKING-DATAASE

¢ \| >'Ay4
=3 |

R
MEuLdSP|0iL '~ | . =
\ ¢ Fll-amehlllﬂ!@ D N

<<back]track

Lomputer dcience

Script-based Attack Framework

e Written in scripting languages (e.g., Ruby, Python)

* Run on the attacker side, generate specific attack
payloads to exploit various vulnerable targets

¢ All-in-one framework with built-in components
providing rich APIs

* Support quick development, making the cost of attack
is much lower than the cost of defense

* http://sectools.org/tag/sploits/

Lomputer dcience

One Example: Metasploit

* Ruby-based penetration framework
* 1000+ (keep increasing) attack scripts
e Target all popular OS platforms

* One attack script can generate different
payloads

* Script kiddie/Bot friendly

Lomputer dcience

Metasploit Exploit Mechanism

1. Probe vulnerable target U%E/

‘Jv

3. Send attack payload Q%E/ Windowist
\
.,

* gy

2. Generate attack payload

dynamically 4. Trigger vuInerabnhty
& Compromise target

Lomputer dcience

Running Example

1 def exploit

2 connect ()

3 preamble = "\x00\x4d\x00\x03\x00\x01"

4 version = probe ver()

5 if version ==

6 payload =|prep ark5()

7 else

8 payload = prep ark4()

9 end

10 preamble << payload.length

11 sock.put(preamble) # Required by protocol
12 sock.get once()

13 |sock.put(payload)|# Send attack payload
14 sock.get once()

15 . # vulnerability triggered

16 end

17 def prep ark5()

18 payload = shellcode()

19 payload << rand alpha(l1167 - payload.length)
20 payload << "\xe98" + [-1172].pack("V")

21 payload << "\xeb\xf9"

22 payload << get target ret(5) # Tar Ver: 5

23 payload << rand alpha(4096 - payload.length)
24 return payload

25 end

Port scanning,
Fingerprinting, etc.
Compose Attack
Payload

Include shellcode,
padding, target-specific
vul bytes, etc.

Send Payload
Trigger vulnerability

Post Exploit

Wait shellcode to be
executed, backdoor
channel created, etc.

Lomputer dcience

AblmT

The exploits
by Rapid 7 t
their networ

The exploits
catastrophi
critical infrag

these device
physical

‘ ComputerWeekly.com

News Industry Technology Blogs Multimedia Vendor Jobs
Management Sectors Topics Content

owned

I €Xpe pa test
S .
ack.
, Home > Topics > ITsecurity > Hackers and cybercrime prevention > Java zero-day vulnerability hits Metasploit and Blackhole N
- itial
R bs »
= . ators of

Java zero-day vulnerability hits] T
Metasploit and Blackhole

Warwick Ashford B = — (o
Thursday 30 August 2012 AL AR = £in EXON + R ERRICATE
09:30

The latest Java zero-day vulnerability is already available to users of the
Metasploit tool and Blackhole exploit kit, say security researchers.

The Java vulnerability allows attackers to use a custom web page to force systems
Ir to download and run malware that does not have to be coded in Java.

Iniernet qaia I1s carrnea
using a protocol called

TCP/IP, where the IP part [:
gives the "addresses"” of aas— . ; umpu EI C] E“EE
NC STATE UNIVERSITY

Motivation

* An effective defense is needed against these
attack scripts

— Catch up the release speed of new attack scripts
— Provide quick defense using existing IDS
— Prevent public exploit resource misuse

Lomputer dcience

Our Work: MetaSymploit

* The First system of
— Fast Attack Script Analysis
— Automatic IDS Signature Generation
— Using Security-enhanced Symbolic Analysis

Lomputer dcience

MetaSymploit

e Features

— Require NO vulnerable application or testing
environments

— Expose attack behavior of each step under
different conditions

— Generate IDS signature just in minutes
— Provide Day-One defense against new scripts

Lomputer dcience

MetaSymploit Architecture

Attack
Script
¢ Symbolically executed
Symbolic API Behavior & Output API
Extension Constraint Logging Hooking

Symbolic Execution Layer (SymExeLayer)

Script-based Attack Framework &
Scripting Language Interpreter

Behavioral APl Calls &

Attack Payloads _
Attack Constraints

Constant Pattern Pattern Refining & Pattern Context
Extracting Consolidating Deriving

Signature Generation (SigGen)

Extracted Patterns Pattern Context

Lomputer dcience
gnatures

MetaSymploit Architecture

-Symbolic Execution Layer

Symbolic API Behavior & Output API
Extension Constraint Logging Hooking

Symbolic Execution Layer (SymExeLayer)

e Symbolize APIs to return symbolic values
— APIs depend on environment/target
— APIs generate dynamic payload content

e Capture fine-grained attack behaviors and conditions
— Behavioral APIs related to environment/target and payload
— Branch constraints that reflect attack conditions

* Hook output API to capture the entire attack payload

— The exact same payload received by target [umputer SCIE"EE

Example of MetaSymploit

1 def exploit

2 connect ()

3 preamble = "\x00\x4d\x00\x03\x00\x01"

4 version =|probe ver()

5 if|version ==

6 payload = prep ark5()

7 else

8 payload = prep ark4()

9 end

10 preamble << payload.length

11 sock.put(preamble) # Required by protocol
12 sock.get once()

13 | sock.put(payload) # Send attack payload
14 sock.get once()

15 . # vulnerability triggered

16 end

17 def prep ark5()

18 payload =|shellcode()

19 payload <<|rand alpha(|l167 - payload.length)
20 payload << "\xe98" + [-1172].pack("V")
21 payload << "\xeb\xf9"
22 payload <<|get target ret(5)|# Tar Ver: 5
23 payload << rand alpha(4096 - payload.length)
24 return payload
25 end

Symbolic APIs:

probe ver ()
shellcode ()
rand alpha ()

Behavior &
Constraint Logging:

probe ver ()

sym ver == 5
shellcode () &
get target ret()

Hook output API:
sock.put (payload)

Lomputer dcience

MetaSymploit Architecture

-Signature Generator

Constant Pattern Pattern Refining & Pattern Context
Extracting Consolidating Deriving

Signature Generation (SigGen)

e Extract signature patterns for specific attack payload
— Based on network protocol format
— Parse both symbolic and concrete contents

* Refine extracted patterns
— Filter out benign/trivial patterns
— Avoid duplicates based on pattern hashing
* Derive semantic context of patterns
— Analyze the call sequence of behavioral APIs [:umpmm, SCIE“EE

NC STATE UNIVERSITY

— AND all constraints as the overall attack condition

Example of IDS Signature

Line 23: payload => [<sym shellcode, len=sym integer>,
<sym rand alpha, len=(1167-sym integer)>,
<"Mxe9\x38\x6¢c\xtb\xf\xff\xeb\xf9\xad\x32\xaa\x71", 12>,
<sym_rand alpha, 2917>]

red is symbolic value, green is concrete value

alert tcp any any -> any 617 (

msg:“script: type’/7.rb (Win), target version: 5,
behavior: probe version, stack overflow, JMP to
Shellcode with vulnerable ret addr";

content:"|e9 38 6¢c fb ff ff eb £f9 ad 32 aa 71|";

pcre:"/[.1{1167}\xe9\x38\x6c\xfb\xff\xff\xeb
\xf9\xad\x32\xaa\x71[a-zA-Z2] {2917}/"; .
Lomputer dcience

classtype:shellcode-detect; s1d:5000656; !]

Implementation

* Focus on Metasploit using Snort Rules
* Integrate into Metasploit Console

* Develop a lightweight symbolic
execution engine for Ruby

Lomputer dcience

Implementation
-Lightweight Symbolic Execution Engine for Ruby

* No modification to Ruby Interpreters
* Compatible with Ruby 1.8/1.9/2.0

e Leveraging Scripting Language Features
— Debug tracing (set trace func)
— Runtime context binding (Ruby’s Binding)
— Dynamic method overriding

Lomputer dcience

Implementation

e Current Prototype:
— Based on Metasploit 4.4
— Ruby 1.9.3
— Gecode/R & HAMPI as constraint solvers
— Support 10 popular components in Metasploit
— Cover 548 attack scripts

Lomputer dcience

Evaluation

* Coverage Testing of Symbolic Execution
Engine

e Effectiveness Validation using Real-World
Metasploit Exploits

 Comparison with Official Snort Rules

Lomputer dcience

Evaluation

-Coverage Testing

o Tested 548 attack scripts. Average <1 minute per script
* 93% automatic, 4% manual effort, 3% not supported

MetaSymploit Coverage Testing on
548 real-world Metasploit attack scripts

2.37% _0.55% B Automatically Executed
0.37%

m Symbolic Loop
W External Library Call
m Obfuscation & Encryption

® Multi-threading

Lomputer dcience
W Bug in Scripts

Evaluation

-Effectiveness Validation using Metasploit

Collect 45 Metasploit attack scripts targeting 45
vulnerable applications from exploit-db.com

Testing Environment e

Ay
| 3

i% Launch Real MetasplmtAttachs A -
bletworh traffic %ﬁ/

One VM running Metasploit
as attacker
Wi RES HARK Several OS VMs with
Vulnerable Applications
lraffc dump installed

MetaSymploit |.Oad Our RUIQ * .

IDS
ol nputer dcience

o NC STATE UNIVERSITY

Evaluation

-Effectiveness Validation

* All attack payload packets are detected using
MetaSymploit automatically generated Snort
rules (100% true positive)

* Test with normal daily network traffic in CS labs
for 2 months. No benign packet is mistakenly
caught (0% false positive)

* The result is expected thanks to Pattern Refining
in Signature Generator

Lomputer dcience

Evaluation

-Comparison with official Snort Rules

* Compare with the official Snort rules (version 11/2012) for
the previous 45 attack scripts.
* Only 22 out of 45 scripts have corresponding official Snort

40 | m MetaSymploit Rules (MRs) 35

35

30 Official Rules (ORs) -

25

20

15 11

12 > 3 3

Bl oes
Same content Same pcre OR pcre No shared Inconsistent
(byte pattern) (regex matching MR pattern detection
pattern) content results

Pattern comparison between 53 MetaSymploit generated [ﬂmllll"!f SC]E“EE
rules and 50 official Snort rules for 22 Metasploit attack scripts

Evaluation

-Comparison with official Snort Signatures

e Updates
— Version 07/2013 (snortrules-snapshot-2950)

— The deficient rules are complemented with
more rules to cover Metasploit exploits

— Recent rules covers more public exploits,
including Meterpreter shellcode

— Introduce new rules: exploit-kit.rules,
malware-tools.rules

Lomputer dcience

Discussion

* The more attack scripts, the more
MetaSymploit IDS signatures

— Use as First Aid before patches are available

— Use relevant sigs based on pattern context

e Limitations of classical symbolic execution
— Infinite symbolic loop
— Path explosion

— Unsolvable constraints

Lomputer dcience

Discussion

* Possible ways to bypass MetaSymploit
— Develop script variants without releasing

— Inject junk code/complex loops/non-linear
constraints

— Obftuscate script, like Blackhole Exploit Kit

Lomputer dcience

Related Work

* Signature Generation

« Attack Perspective:
— Autograph [USENIX Security ‘04], Polygraph [S&P ‘05],
Hamsa [S&P*06]

* Vulnerability Perspective:
— Vigilante [SOSP “05], ShieldGen [S&P “‘07], Bouncer [SOSP ‘07]
* Symbolic Execution for Security

* Binary Level:
— BitBlaze [ICISS '08], SAGE [NDSS '08], EXE [CCS '06], AEG
[NDSS '11].
 Scripting Languages focusing on web applications:
— JavaScript [S&P “10], PHP [USENIX Security ‘06], Ruby on

Rails [CCS “10] |
Lomputer dcience

Don’t Get Me Wrong

* Metasploit is AWESOME! We like it!
* But public exploit should not be misused!

* When you publish a new exploit, attach
IDS rule with it, to avoid bad guys taking
advantage of your good contribution!

Lomputer dcience

Thanks!

Questions?

Lomputer dcience

