Exploiting Hardware Heterogeneity for Interactive Services

Yuxiong He²

Joint work with Shaolei Ren¹, Sameh Elnikety², Kathryn S McKinley²

> ¹Florida International University ²Microsoft Research

Interactive Services

• Applications

-Web search, web server, finance server

- Requirements
 - High quality, fast response
 - High throughput, low cost

Hardware for Interactive Services in Today's Data Center

Homogeneous servers

Few fast high-performance cores

Many slow energy-efficient cores

Variance of Job Service Demand

Homogeneous server with slow cores: cannot satisfy QoS of long requests

Homogeneous server with fast cores:

meet QoS but energy consuming and lower throughput

Figure. Measured Bing search service demand distribution

Opportunity of Heterogeneity

Figure. Measured Bing search service demand distribution

Contributions

- FOF scheduler for heterogeneous servers
- Bing search server simulation
 - Double throughput while meeting QoS
- FOF for servers with SMT (Simultaneous Multithreading)
- Finance server implementation
 - 16% higher throughput than default OS scheduler

Scheduling Model

- Inputs
 - Queue of jobs
 - Job service demand unknown
 - Job deadline
 - Partial results

Measured Bing search quality profile

Scheduling Model

- Inputs
 - Queue of jobs
 - Job service demand unknown
 - Job deadline
 - Partial results
- Outputs
 - Assign jobs to fast/slow cores
 - Decide processing time of jobs
- Objective
 - Maximize total quality of all jobs

Challenge I. Unknown Service Demand

- How can we assign long jobs to fast cores and short jobs to slow cores?
- Key insight: Slow to Fast
 - Migrate a job from slower to faster cores
 - Short jobs complete on slow cores
 - Leave fast cores for long jobs

Challenge II. Jobs Compete for Cores

- Which jobs should be processed by fast cores?
- Key insight: Fast Old
 - Assign fast cores to old jobs.

"Fast Old" insight

- Older job has closer deadline.
- Older job has more work left.
- "Fast old" improves response quality

FOF Scheduler: Fast Old & First

- 1. Fast first: always use the fastest available core
- 2. Fast old: promote old jobs slow to fast

Evaluation

- Simulation modeling Bing search workload
- Hardware:

4 servers configurations with same design time power budget

A: 2 Big cores (Sandy Bridge) B: 10 Medium cores (Nehalem) C: 24 Small cores (AtomD) D: 1 B + 4 M + 2 S

Homogeneous Fast vs Slow Cores

Homogeneous Fast vs Slow Cores

Homogeneous Fast vs Slow Cores

Heterogeneous vs. Homogeneous

Opportunities on Existing Data Center Hardware

- SMT (Simultaneous Multithreading) or Hyperthreading
- SMT creates asymmetry among cores
 - Fast core: a physical core only runs one job
 - Slow core: two logical cores belonging to the same physical core both run jobs

Insight SMT = dynamic heterogeneous core

Simultaneous Multithreading (SMT)

FOF Scheduler for SMT

1. Fast first

Fastest = unshared core

2. Fast old

free core? Find shared pair (oldest, X) move X to free core

Evaluation

- Implementation on Finance application: Monte-Carlo computation for option price
- Hardware: 6 Core 2-way SMT 3.33 GHz Intel Xeon X5680
 - shared (slow) smt-core speed = 0.63 x unshared (fast) core speed
- FOF achieves
 - 16% higher throughput than default
 OS scheduler while meeting QoS

Conclusions

- FoF scheduler for interactive services
 - Exploit hardware heterogeneity
 - Achieve both high quality and high throughput
- Heterogeneous servers: Bing search simulation
 - Double throughput while meeting QoS
- SMT: Finance server implementation
 - 16% higher throughput than default OS scheduler

Thank you & Questions