
Data Node Encrypted File System:
Secure Deletion for Flash Memory

Joel Reardon Srdjan Čapkun David Basin
ETH Zurich, Switzerland

9.8.12

1



Secure deletion: security task of deleting information such
that it becomes irrecoverable (to a coercive attacker)

2



Secure Deletion Problem

3



Secure Deletion Easily Solved for Block Devices

block device layout

4



Secure Deletion Easily Solved for Block Devices

block device layout after overwriting file data

5



Secure Deletion not Trivial for Log-Structured FSes

log-structured device layout

6



Overwriting in Log-Structured File Systems

log-structured device layout after overwriting file data

7



Why are log-structured file systems relevant?
Paradigm is ubiquitously used for flash memory

(ubiquitously used for portable devices)

8



YAFFS (used on Android phones)

YAFFS is a log-structured file system

deleted data remains with average use upwards of 48 hours and
months with infrequent use

9



Log-Structured File Systems and Flash Memory

flash memory holds electrical charge without power
erasing is a brute operation that fills the charge of many cells
writing is a surgical operation that drains particular cells

erasures are costly: power, wear, time
erasure is natural efficiency metric
erasures should also be evenly levelled

10



Naive Approach

erase blocks contain an eclectic mixture of colocated data

11



Naive Approach

deleted all data in this way is very costly

12



Design Goals

possible solutions
only securely delete sensitive files
encrypt each file with a key
drain charge from remaining cells (scrubbing)

what we want to achieve
work within specification of flash memory
be transparent to the application and users
small cost in space, memory, and computation
efficient fine-grained secure deletion

13



Our contributions

Data Node Encrypted File System (DNEFS)
general file system change that affords efficient secure deletion

UBIFSec
full implementation of DNEFS for the Linux Flash File system UBIFS

14



Data Node Encrypted File System (DNEFS)

intuition:
we need (at least) to erase an erase block to delete some data

without batching, this reduces to the inefficient naive solution

goal now is to maximize ratio of bytes deleted to erase blocks erased

solution:
encrypt each data node with a unique key
colocate the keys in a (dense) key storage area (KSA)
periodically purge KSA to remove deleted keys

15



DNEFS Outline

16



DNEFS Write

17



DNEFS Write

18



DNEFS Write

19



DNEFS Write

20



DNEFS Read

21



DNEFS Read

22



DNEFS Read

23



DNEFS Read

24



Key State Map and KSA

25



Key State Map and KSA

26



Key State Map and KSA

27



Key State Map and KSA

28



Key State Map and KSA

29



Key State Map and KSA

30



Key State Map and KSA

31



Introducing UBIFSec: our secure deletion implementation
for the UBI file system (UBIFS)

32



UBIFS: on top of UBI

33



UBIFSec

34



UBIFSec Implementation

UBI provide logically-referenced KSA, atomic updates with
deletion, automatic wear levelling

DNEFS cryptographic operations during UBIFS compression

DNEFS integrated with the checkpoint and replay mechanism in
UBIFS

DNEFS key states managed by UBIFS’s index

fully implemented as a single patch, incremental patching ongoing

35



We tested UBIFSec in simulations and running as file
system for a Google Nexus One Android phone.

36



Erase Block Wear

Purge PEB erasures Lifetime
period per hour (years)
Stardard UBIFS 21.3 841
60 minutes 26.4 679
30 minutes 34.9 512
15 minutes 40.1 447
5 minutes 68.5 262
1 minute 158.6 113

1

37



Throughput and Power Consumption

YAFFS UBIFS UBIFSec

Read rate (MiB/s) 4.4 3.9 3.0
Power usage (mA) 39 39 39
GiB read per % 5.4 4.8 3.7

Write rate (MiB/s) 2.4 2.1 1.7
Power usage (mA) 30 46 41
GiB written per % 3.8 2.2 2.0

1

38



Summary

secure deletion for flash memory problem is not straightforward
we propose DNEFS: secure deletion by periodic purging of a small
key area

each data node is stored encrypted, with its key in the key area
provides guaranteed fine-grained secure deletion against
computationally-bounded adversary

we implement DNEFS: UBIFSec extends UBIFS to include our
design

fully implemented into the file system without sacrificing features
additional wear, space and computation are reasonable
UBIFSec runs normally on an Android phone

DNEFS can also be integrated into hardware flash controllers as
well as software flash file systems

extended to an encrypted file system by simply encrypting the
KSA with a passphrase

39



Why do we replace both unused and deleted keys with
new random values?

40



Peek-a-boo Attacker

41



Peek-a-boo attacker without unused replacement

42



Peek-a-boo attacker performs a peek attack

43



Peek-a-boo attacker with unused replacement

44



Peek-a-boo attacker performs a peek attack

45



Encrypting Whole File

we still need seek()

ECB: semantic security

CTR-like, CBC-like: efficient modifications

CTR-like, CBC-like with IVs per datanode: our solution

46



Data Node Size

Data node size KSA size Copy cost
(flash pages) (EBs per GiB) (EBs)

1 64 0
8 8 0.11
64 1 0.98
512 0.125 63.98
4096 0.016 511.98

1

47



Optimization: long-term and short-term data

each time we GC a data node, we may promote it to a higher
range of KSA

KSA is divided into ranges of expected life time

we promote by heuristics: how many times we’ve had to copy the
data around

getting a new key is low-cost: we have to anyway copy the data

48



Adding support for encrypted file system

currently, all the data is encrypted, but the keys are plaintext
trivial change to turn it into password-protected volume

encrypt the entire KSA with a single key derived from a password
more efficient than to have a second encryption layer on top

49



Generalizing to FTL

our solution is a general technique
encrypt blocks at smallest granularity
colocate keys in a logically-referenced migrating KSA
periodically update the KSA’s blocks to delete data

could be extended to Flash Translation Layer (FTL)
used for SD card, USB sticks, etc.
maps logical sectors to flash addresses
allows normal (e.g., FAT) file systems to be mounted
vary in implementation, but all the same principle

50



Generalizing to FTL

in the mapping of sector to flash address, also put a key position
when mounting, after this mapping is built, then determine the set of
used keys

reserve a set of erase blocks for storing keys
last page of each block has a magic number, logical KSA number and
purging epoch number
periodically purge the KSA

file system must issue TRIM commands to the FTL to notify
unused sectors

should be the case regardless

51


