P3: Toward Privacy-Preserving Photo Sharing

Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega

Networked Systems Laboratory & Signal and Image Processing Institute University of Southern California

Cloud-based Photo Sharing Services (PSPs)

However, there are serious privacy concerns

The Case of Privacy Infringement by PSPs

Today we have no choice but to trust PSPs

These Privacy Concerns Are Real

Photobucket leaves users exposed

August 09, 2012 | By Julia Grenberg, CNN

CNN.com, August 9, 2012

TECHNOLOGY | June 8, 2011

Facebook Again in Spotlight on Privacy

Photo-Recognition Technology Sparks Privacy Concerne

Wall Street Journal, June 8, 2011

Germans Reopen Investigation on Facebook Privacy

By KEVIN J. O'BRIEN Published: August 15, 2012

New York Times, August 15, 2012

Angry with Instagram? These 'invisible' data brokers sell your privacy every day

By Bob Sullivan

NBC News, December 19, 2012

Cloud-side Processing for Mobile Devices

Cloud-side processing is often useful for mobile devices in many ways

Question: Can we protect users' privacy while still performing cloud-side image transformation?

Full Encryption?

We will lose benefits provided by cloud-side processing

Goals, Threat Model, and Assumptions

Preserving users' privacy with cloud-side processing

Privacy and Attack Model

- Unauthorized access
- Algorithmic recognition

We trust

• Mobile devices' HW and SW

We don't trust

- Eavesdropper on the network
- "Honest-but-curious" PSPs

High-level Description of Our Approach

P3 Requirements

P3 Algorithm: Why It Works

Exploiting the characteristics of DCT coefficients in JPEG.

Lam and Goodman, "A Mathematical Analysis of the DCT Coefficient Distributions for Images", ITIP 2000

Sparseness

Sign

Magnitude

P3 Algorithm: How the encryption works

Threshold vs. Storage Trade-off

Privacy: What is exposed?

P3 Decryption Challenge

Challenge: Given S and f(P), can we get f(Y)?

We need to perform careful analysis since P3 encryption hides sign information.

Challenge: Given **S** and **f(P)**, can we get **f(Y)**?

Analysis Result: C can be derived from S

P3 System Architecture

P3 can be implemented with existing PSPs without causing infrastructure changes

Prototype on Android Phone

P3 is practical and can be added to Facebook

Category	Average	Stdev
P3 Encryption	152.7 ms	20.87
P3 Decryption	191.85 ms	24.83

Evaluating Privacy

Objective metric

PSNR

- Computer vision algorithms
 - SIFT feature detection
 - Edge detection: Canny
 - Face detection: Haar

Face recognition: EigenFace

P3 preserves privacy against algorithmic attacks

Results: Face Recognition

- EigenFace [Turk et al. 1991] with the Color FERET database
- CSU's face recognition evaluation system
 - 4 probing (testing) sets
 - 2 distance metrics (Euclidean, MahCosine)
 - Different P3 thresholds from 1 to 100
 - Public parts as a training set

P3 Successfully Breaks Face Recognition

Summary and Contributions

Our algorithm and system, collectively called P3, provides privacy-preserving photo sharing

- Propose a novel photo encryption/decryption algorithm.
- Transparent system design that can work with existing PSPs.
- A complete prototype and extensive privacy evaluation using computer vision-based recognition algorithms.