
Application Placement and Demand Distribution
in a Global Elastic Cloud: A Unified Approach

1Hangwei Qian, 2Michael Rabinovich
1 VMware

2 Case Western Reserve University

1

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

2

Geo-Distributed Cloud Platforms
 Cloud providers deploy multiple data centers (DCs) around the world

(Amazon/Google/Microsoft, etc.)
 Cloud Customers (i.e., application providers) deploy applications in the

cloud

 Unpredictable load of the hosted applications: location/volume
 3

e.g., DNS

Application Placement and Demand Distribution

 Resource auto-scaling in the cloud
 Application placement – when/where to deploy an application instance
 Demand distribution - how to distribute client requests among the instances
 Only DC-level decisions – do not care about the number of application

instances or request distribution inside data centers

 Existing approaches – address the two problems in isolation
 Place applications assuming client requests go to closest data centers
 Distribute client requests given the location of application instances
 Do not consider back-end databases.

 Our approach
 Unified: consider two problems together
 Consider back-end databases
 Address the scalability problem of computing a policy

4

Objectives

 Minimize overall user perceived response time
 Minimize the overall network latency
 Avoid data center overloading

 Minimize the number of application instances
 Save resources and customer costs

 Minimize the number of placement changes
 Reduce redeployment cost
 Better cache behavior

5

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

6

Computing the Unified Policy for App
Placement and Request Distribution

 Step I - optimal request distribution with full deployment
 Full deployment - each application is deployed at each data center
 Optimal request distribution - min-cost algorithm to solve centrally

 Step II - application placement policy
 Calculate the amount of demand each data center receives for each

application (from step I)
 Remove underutilized instances (below some threshold)

 Step III – request distribution policy
 Reassign demand for removed instances
 Aggregate with demand for instances not removed in step II

7

Assumptions

 Client Clusters (CC): group of clients sharing the same BGP prefix
(~400K, network-aware clustering [SIGCOMM2000])

 Fixed back-end database location
 Aggregate distance -- simply sum up, though can easily be

extended to more complex options
 Request rate as a metric for demand and data center load and

capacity
 Given demand pattern -- set of request rates from each client cluster for

each application
 Normalized request rate for different applications
 As a measurement of data center capacity

 Notation: A - number of applications, C - number of client
clusters, D – number of data centers

8

I - Optimal Request Distribution with
Full Deployment

 Minimize overall network latency
 Avoid data center overloading
 Limit the amount of total demand each data center receives (capacity

limitation)

 Min-cost flow model
 Source node, sink node, pair nodes (application, CC) and data center

nodes
 All nodes are balanced except the source and sink node
 Minimize the cost when pushing all demands from source node to

sink node

9

10

Simple Example

 Edge: cost, capacity
 Supply node: generate flow (node N1)
 Demand node: consume flow (node N4)
 Balance node: neither (node N2 and N3)

N1

N2

N3

N4

Generate 6
flow units

Consume 6
flow units

Flow Model for Optimal Request Distribution

11

 Pair node (Yam) – requests from client cluster m for application a (ram)

 Total amount of flow: R = ∑ ∑ 𝑟𝑎𝑎𝐶
𝑚=1

𝐴
𝑎=1

 Move flow R from node S to node T with the minimum cost

R

Permutation Prefix Clustering

 Scalability issue: A*C=100*400K=4*107 pair nodes
 Each pair node has permutation of preference of data centers

{1,3,10,5,2,9,6,8,4,7}
 Merging pair nodes sharing prefix of certain length L of their

permutations - if merge Y1C and Yam to Y’
 Merged capacity: r’=r1C+ ram
 Merged cost: d’n=(d1cn* r1C+ damn * ram)/(r1C+ ram)

 Trade-off between scalability and performance
 Number of pair nodes: ∏ (𝐷 − 𝑖)𝐿−1

𝑖=0
 Performance penalty

12

Merged Min-Cost Flow Model

13

 Total number of pair nodes: 20 ∗ 19 ∗ 18 = 6840, 𝑖𝑖 𝐿 = 3
 𝑎𝑎𝑎 𝐷 = 20

II - Application Placement

 Flow fna : amount of requests DC n receives for each application a
 (obtained from step I)

 Deletion Threshold (DT): amount of requests worthy to deploy an
application instance in the data centers.

 Normal flows: if fna ≥ DT
 Tiny flows: if fna < DT
 Placement policy
 Deploy application a at data center n for normal flow

 Remove tiny flows unless it is the only instance for the
applications

14

Reducing Placement Changes

 Hysteresis placement: add “stickiness” to previously deployed
application instances
 Smaller Deletion Threshold makes it harder to remove instances

 Hysteresis ratio (HR): real Deletion Threshold = (Deletion Threshold) /
(Hysteresis rate)

 High HR for previously deployed application instances (>1)

15

III – Demand Distribution

 Redistribute the tiny flows (e.g., residual demand) to
the data centers calculated placement policy

 Integrate the distribution of normal flows and tiny
flows to get the final demand distribution policy

16

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

17

Cloud Model

 Gnutella clients to mimic client clusters (~100K)
 Planetlab nodes (selected according to the distribution of

clients) to mimic data centers (20)
 Planetlab nodes (randomly selected) to mimic back-end

databases (100)
 “ping” network latency for the proximity among entities
 Each data center can deal with 10,000 req/s (200,000 req/s

for all data centers)

18

Experiment Setup

 Load factor, e.g., 0.5 (100,000 requests/s)
 Demand of different applications follows power law

distribution with parameter 1
 Load generation (high-level)
 For each request, select the application with power law

 Select the client cluster it comes from

 CSIM: a discrete-event simulation tool

19

Prefix Clustering Evaluation

 Performance VS scalability: prefix length 3 is a good trade-off

20

Scalability

 Execution time vs. number of applications and data centers
 Keep other parameters fixed

21

Policy Performance
 Compare with an existing method, which addressed both problems

heuristically but in isolation
 Update policy every 30 sec, and 900 seconds for the whole experiment
 Workload changes randomly between +-∆% from cycle to cycle (150 seconds)

22

Summary

 A unified approach to deal with the application placement
and demand distribution problems together based on
min-cost flow model

 Clustering technique to deal with the scalability issue
 Evaluations show that this approach is scalable and very

effective

23

Thank you!

24

	Application Placement and Demand Distribution in a Global Elastic Cloud: A Uniﬁed Approach�
	Outline
	Geo-Distributed Cloud Platforms
	Application Placement and Demand Distribution
	Objectives
	Outline
	Computing the Unified Policy for App Placement and Request Distribution
	Assumptions
	I - Optimal Request Distribution with �Full Deployment
	Simple Example
	Flow Model for Optimal Request Distribution
	Permutation Prefix Clustering
	Merged Min-Cost Flow Model
	II - Application Placement
	Reducing Placement Changes
	III – Demand Distribution
	Outline
	Cloud Model
	Experiment Setup
	Prefix Clustering Evaluation
	Scalability
	Policy Performance
	Summary
	Thank you! ��

