
Application Placement and Demand Distribution
in a Global Elastic Cloud: A Unified Approach

1Hangwei Qian, 2Michael Rabinovich
1 VMware

2 Case Western Reserve University

1

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

2

Geo-Distributed Cloud Platforms
 Cloud providers deploy multiple data centers (DCs) around the world

(Amazon/Google/Microsoft, etc.)
 Cloud Customers (i.e., application providers) deploy applications in the

cloud

 Unpredictable load of the hosted applications: location/volume
 3

e.g., DNS

Application Placement and Demand Distribution

 Resource auto-scaling in the cloud
 Application placement – when/where to deploy an application instance
 Demand distribution - how to distribute client requests among the instances
 Only DC-level decisions – do not care about the number of application

instances or request distribution inside data centers

 Existing approaches – address the two problems in isolation
 Place applications assuming client requests go to closest data centers
 Distribute client requests given the location of application instances
 Do not consider back-end databases.

 Our approach
 Unified: consider two problems together
 Consider back-end databases
 Address the scalability problem of computing a policy

4

Objectives

 Minimize overall user perceived response time
 Minimize the overall network latency
 Avoid data center overloading

 Minimize the number of application instances
 Save resources and customer costs

 Minimize the number of placement changes
 Reduce redeployment cost
 Better cache behavior

5

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

6

Computing the Unified Policy for App
Placement and Request Distribution

 Step I - optimal request distribution with full deployment
 Full deployment - each application is deployed at each data center
 Optimal request distribution - min-cost algorithm to solve centrally

 Step II - application placement policy
 Calculate the amount of demand each data center receives for each

application (from step I)
 Remove underutilized instances (below some threshold)

 Step III – request distribution policy
 Reassign demand for removed instances
 Aggregate with demand for instances not removed in step II

7

Assumptions

 Client Clusters (CC): group of clients sharing the same BGP prefix
(~400K, network-aware clustering [SIGCOMM2000])

 Fixed back-end database location
 Aggregate distance -- simply sum up, though can easily be

extended to more complex options
 Request rate as a metric for demand and data center load and

capacity
 Given demand pattern -- set of request rates from each client cluster for

each application
 Normalized request rate for different applications
 As a measurement of data center capacity

 Notation: A - number of applications, C - number of client
clusters, D – number of data centers

8

I - Optimal Request Distribution with
Full Deployment

 Minimize overall network latency
 Avoid data center overloading
 Limit the amount of total demand each data center receives (capacity

limitation)

 Min-cost flow model
 Source node, sink node, pair nodes (application, CC) and data center

nodes
 All nodes are balanced except the source and sink node
 Minimize the cost when pushing all demands from source node to

sink node

9

10

Simple Example

 Edge: cost, capacity
 Supply node: generate flow (node N1)
 Demand node: consume flow (node N4)
 Balance node: neither (node N2 and N3)

N1

N2

N3

N4

Generate 6
flow units

Consume 6
flow units

Flow Model for Optimal Request Distribution

11

 Pair node (Yam) – requests from client cluster m for application a (ram)

 Total amount of flow: R = ∑ ∑ 𝑟𝑎𝑎𝐶
𝑚=1

𝐴
𝑎=1

 Move flow R from node S to node T with the minimum cost

R

Permutation Prefix Clustering

 Scalability issue: A*C=100*400K=4*107 pair nodes
 Each pair node has permutation of preference of data centers

{1,3,10,5,2,9,6,8,4,7}
 Merging pair nodes sharing prefix of certain length L of their

permutations - if merge Y1C and Yam to Y’
 Merged capacity: r’=r1C+ ram
 Merged cost: d’n=(d1cn* r1C+ damn * ram)/(r1C+ ram)

 Trade-off between scalability and performance
 Number of pair nodes: ∏ (𝐷 − 𝑖)𝐿−1

𝑖=0
 Performance penalty

12

Merged Min-Cost Flow Model

13

 Total number of pair nodes: 20 ∗ 19 ∗ 18 = 6840, 𝑖𝑖 𝐿 = 3
 𝑎𝑎𝑎 𝐷 = 20

II - Application Placement

 Flow fna : amount of requests DC n receives for each application a
 (obtained from step I)

 Deletion Threshold (DT): amount of requests worthy to deploy an
application instance in the data centers.

 Normal flows: if fna ≥ DT
 Tiny flows: if fna < DT
 Placement policy
 Deploy application a at data center n for normal flow

 Remove tiny flows unless it is the only instance for the
applications

14

Reducing Placement Changes

 Hysteresis placement: add “stickiness” to previously deployed
application instances
 Smaller Deletion Threshold makes it harder to remove instances

 Hysteresis ratio (HR): real Deletion Threshold = (Deletion Threshold) /
(Hysteresis rate)

 High HR for previously deployed application instances (>1)

15

III – Demand Distribution

 Redistribute the tiny flows (e.g., residual demand) to
the data centers calculated placement policy

 Integrate the distribution of normal flows and tiny
flows to get the final demand distribution policy

16

Outline
Introduction
 System Environment

Unified Policy Computation
 Assumptions
 Algorithm

Evaluation
 Simulation
 Prototype testing (not discussed – see paper)

Summary

17

Cloud Model

 Gnutella clients to mimic client clusters (~100K)
 Planetlab nodes (selected according to the distribution of

clients) to mimic data centers (20)
 Planetlab nodes (randomly selected) to mimic back-end

databases (100)
 “ping” network latency for the proximity among entities
 Each data center can deal with 10,000 req/s (200,000 req/s

for all data centers)

18

Experiment Setup

 Load factor, e.g., 0.5 (100,000 requests/s)
 Demand of different applications follows power law

distribution with parameter 1
 Load generation (high-level)
 For each request, select the application with power law

 Select the client cluster it comes from

 CSIM: a discrete-event simulation tool

19

Prefix Clustering Evaluation

 Performance VS scalability: prefix length 3 is a good trade-off

20

Scalability

 Execution time vs. number of applications and data centers
 Keep other parameters fixed

21

Policy Performance
 Compare with an existing method, which addressed both problems

heuristically but in isolation
 Update policy every 30 sec, and 900 seconds for the whole experiment
 Workload changes randomly between +-∆% from cycle to cycle (150 seconds)

22

Summary

 A unified approach to deal with the application placement
and demand distribution problems together based on
min-cost flow model

 Clustering technique to deal with the scalability issue
 Evaluations show that this approach is scalable and very

effective

23

Thank you!

24

	Application Placement and Demand Distribution in a Global Elastic Cloud: A Uniﬁed Approach�
	Outline
	Geo-Distributed Cloud Platforms
	Application Placement and Demand Distribution
	Objectives
	Outline
	Computing the Unified Policy for App Placement and Request Distribution
	Assumptions
	I - Optimal Request Distribution with �Full Deployment
	Simple Example
	Flow Model for Optimal Request Distribution
	Permutation Prefix Clustering
	Merged Min-Cost Flow Model
	II - Application Placement
	Reducing Placement Changes
	III – Demand Distribution
	Outline
	Cloud Model
	Experiment Setup
	Prefix Clustering Evaluation
	Scalability
	Policy Performance
	Summary
	Thank you! ��

