Application Placement and Demand Distribution
in a Global Elastic Cloud: A Unified Approach

lHangwei Qian, *Michael Rabinovich
g
1 VMware
2 Case Western Reserve University

Outline

“* Introduction
> System Environment

+* Unified Policy Computation
> Assumptions
> Algorithm

+* Evaluation
> Simulation
> Prototype testing (not discussed — see paper)

“**Summary

Geo-Distributed Cloud Platforms

< Cloud providers deploy multiple data centers (DCs) around the world
(Amazon/Google/Microsoft, etc.)

< Cloud Customers (i.e., application providers) deploy applications in the
cloud

-

/

Data

Data _ - Center n
y

Client

< Unpredictable load of the hosted applications: location/volume

Application Placement and Demand Distribution

<+ Resource auto-scaling in the cloud
> Application placement — when/where to deploy an application instance
> Demand distribution - how to distribute client requests among the instances
> Only DC-level decisions — do not care about the number of application
instances or request distribution inside data centers
< Existing approaches — address the two problems in isolation
> Place applications assuming client requests go to closest data centers
> Distribute client requests given the location of application instances
> Do not consider back-end databases.

< Our approach
> Unified: consider two problems together

> Consider back-end databases
> Address the scalability problem of computing a policy

Objectives

< Minimize overall user perceived response time
> Minimize the overall network latency
> Avoid data center overloading

< Minimize the number of application instances

> Save resources and customer costs

< Minimize the number of placement changes

> Reduce redeployment cost
> Better cache behavior

Outline

4

4

)

>

+* Unified Policy Computation
> Assumptions
> Algorithm

Computing the Unified Policy for App
Placement and Request Distribution

< Step | - optimal request distribution with full deployment
> Full deployment - each application is deployed at each data center
> Optimal request distribution - min-cost algorithm to solve centrally
< Step Il - application placement policy

> Calculate the amount of demand each data center receives for each
application (from step 1)

> Remove underutilized instances (below some threshold)
< Step Il — request distribution policy
> Reassign demand for removed instances
> Aggregate with demand for instances not removed in step Il

L)

Assumptions

Client Clusters (CC): group of clients sharing the same BGP prefix
(~400K, network-aware clustering [SIGCOMM?2000])

Fixed back-end database location

Aggregate distance -- simply sum up, though can easily be
extended to more complex options

Request rate as a metric for demand and data center load and

capacity

> Given demand pattern -- set of request rates from each client cluster for
each application

> Normalized request rate for different applications

> As a measurement of data center capacity

Notation: A - number of applications, C - number of client
clusters, D — number of data centers

| - Optimal Request Distribution with
Full Deployment

< Minimize overall network latency

< Avoid data center overloading
> Limit the amount of total demand each data center receives (capacity
limitation)
< Min-cost flow model

> Source node, sink node, pair nodes (application, CC) and data center
nodes

> All nodes are balanced except the source and sink node

> Minimize the cost when pushing all demands from source node to
sink node

Simple Example

< Edge: cost, capacity
> Supply node: generate flow (node N1)
> Demand node: consume flow (node N4)
> Balance node: neither (node N2 and N3)

Generate 6 2,5) 5 4 » 8) Consume 6
flow units T flow e flow units
’L"\O its

(3 A)
N1 i & (L - N4
Un/'ts A 'ﬁ\O\N un

10

Flow Model for Optimal Request Distribution

< Pair node (Y,) — requests from client cluster m for application a (r,,,)
. P — V4 C

< Total amount of flow: R = X4 _1 Yr=1Tum

<+ Move flow R from node S to node T with the minimum cost

(d111, 1) e

@iy

(dacp, rac) (D
bcp) ;

Permutation Prefix Clustering

< Scalability issue: A*C=100*400K=4*10 pair nodes

< Each pair node has permutation of preference of data centers
{1,3,10,5,2,9,6,8,4,7}

< Merging pair nodes sharing prefix of certain length L of their
permutations - if merge Y,.,and Y, to Y’

» Merged capacity: r’=r,+r,,,

> Merged cost: d’ =(d,.,* r;c+d ., * rym)/(Fict M)
< Trade-off between scalability and performance

> Number of pair nodes: [1}=, (D — i)

> Performance penalty

12

Merged Min-Cost Flow Model

< Total number of pair nodes: 20 * 19 * 18 = 6840, if L =3
and D = 20

13

Il - Application Placement

Flow f,,: amount of requests DC n receives for each application a
(obtained from step 1)

Deletion Threshold (DT): amount of requests worthy to deploy an
application instance in the data centers.

Normal flows: if f,,2>DT
Tiny flows: if f,,<DT

» Placement policy

> Deploy application a at data center n for normal flow

> Remove tiny flows unless it is the only instance for the
applications

14

Reducing Placement Changes

< Hysteresis placement: add “stickiness” to previously deployed
application instances

> Smaller Deletion Threshold makes it harder to remove instances

> Hysteresis ratio (HR): real Deletion Threshold = (Deletion Threshold) /
(Hysteresis rate)

> High HR for previously deployed application instances (>1)

15

Il - Demand Distribution

< Redistribute the tiny flows (e.g., residual demand) to
the data centers calculated placement policy

< Integrate the distribution of normal flows and tiny
flows to get the final demand distribution policy

16

Outline

+* Evaluation
> Simulation
> Prototype testing (not discussed — see paper)

4

4

)

17

Cloud Model

< Gnutella clients to mimic client clusters (~*100K)

< Planetlab nodes (selected according to the distribution of
clients) to mimic data centers (20)

< Planetlab nodes (randomly selected) to mimic back-end
databases (100)

<+ “ping” network latency for the proximity among entities

< Each data center can deal with 10,000 req/s (200,000 req/s
for all data centers)

Experiment Setup

< Load factor, e.g., 0.5 (100,000 requests/s)

< Demand of different applications follows power law
distribution with parameter 1

< Load generation (high-level)
> For each request, select the application with power law

» Select the client cluster it comes from

< CSIM: a discrete-event simulation tool

19

Prefix Clustering Evaluation

< Performance VS scalability: prefix length 3 is a good trade-off

P

Delay Penalty (%)
SO BN B g

Frrrrrrrrrr1r01i 1110111
load=0.3 —— 4

load=0.4 —¢— _
load=0.5 _
load=0.6
load=0.7
load=0.8)
load=0.9 —&— 7

sgrgigiaig]

OHNMQ'W\OI\OOO\OHNMQ'W\OI\OOO\O

e e e e e o o] o] e e (]

Prefix Length

Execution Time (sec)

58 A I Y Y I O B

O NN FNNOINO NS — N NN NN D

e e e e] e e e e e (]

Prefix Length

20

Scalability

< Execution time vs. number of applications and data centers

>

100
90
80
70
60
50
40
30
20
10

Execution Time (sec)

0 BE<
0051152253354455556

Keep other parameters fixed

T T T 1
u load=0.9 —— |
load=0.7
B load=0.5]
— load=0.3 —&— -

Number of apps (thousand)

Execution Time (sec)

450

390
360
330
300

240
210
180
150
120
90
60
30

0 o—=
0 10 20 30 40 50 60 70 80 90 100110

T T T 1
load=0.9
load=0.7

load=0.5

——
load=0.3 —i—

/

Number of DCs

Policy Performance

< Compare with an existing method, which addressed both problems
heuristically but in isolation
> Update policy every 30 sec, and 900 seconds for the whole experiment

> Workload changes randomly between +-A% from cycle to cycle (150 seconds)

o> 4 ! | | hI . 1[I 1e+09 ¢ | | | | | | .
Q euristic —o— | [i
X 35k min-cost —=— -4 & let08 -
_% 3 - g le+07 — o—oO 6 —6—6—7° _
= Z 1e+06 E 3
QO 25 B — -46; [i
27| | &100000 F 3
gf oo ° o—® g 10000 E -
g 19T 1 2 1000E E
o 1 1 & 100F L
S 05k I S = ! heuristic —o—
> - 10 ¢ min-cost =
< O I I I I I I 1 N I I I I I]
0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70

Demand Change Ratio (%) Demand Change Ratio (%)

22

Summary

< A unified approach to deal with the application placement
and demand distribution problems together based on
min-cost flow model

< Clustering technique to deal with the scalability issue

< Evaluations show that this approach is scalable and very
effective

Thank you!

	Application Placement and Demand Distribution in a Global Elastic Cloud: A Uniﬁed Approach�
	Outline
	Geo-Distributed Cloud Platforms
	Application Placement and Demand Distribution
	Objectives
	Outline
	Computing the Unified Policy for App Placement and Request Distribution
	Assumptions
	I - Optimal Request Distribution with �Full Deployment
	Simple Example
	Flow Model for Optimal Request Distribution
	Permutation Prefix Clustering
	Merged Min-Cost Flow Model
	II - Application Placement
	Reducing Placement Changes
	III – Demand Distribution
	Outline
	Cloud Model
	Experiment Setup
	Prefix Clustering Evaluation
	Scalability
	Policy Performance
	Summary
	Thank you! ��

