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Scheduling

 Tells you how and when to assign to processors

» Task = anything you can execute
* Processor = anything you can execute it on



Scheduling

 Tells you how and when to assign to processors

* Task = runnable thread, web request, MapReduce job
* Processors = CPU core, service backend, cluster machine

web request — service backend — worker thread — kernel thread — CPU core




Scheduling

 Tells you how and when to assign to processors

* Task = runnable thread, web request, MapReduce job
* Processors = CPU core, service backend, cluster machine

* Many different settings
* Within a machine, across machines
e Single-tiered, multi-tiered
* Online, offline

* Several different objectives
e Latency, throughput
* Priority, fairness



All you need to know
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Theoretical view

task queue processor



Theoretical view




Theoretical view

arrival process
(e.g., Poisson)




Theoretical view

T mn

task size service time
(e.g., exponential dist.)



Theoretical view
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task priority



Theoretical view

J;Lm o

scheduling policy
* first-come-first-served
* shortest-task-first

* priority




Theoretical view

context switch
(by dispatcher)

preemptive?

fair sharing



Theoretical view

scheduling policy

* round-robin (time quantum)
* shortest-remaining-time-first*
* priority

* related to work on progress indicators



Theoretical view




Theoretical view
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Theoretical view
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Takeaways?

* Lots of terms, organized by queueing theory

* Theory makes simplifying assumptions
 Example: Shortest-task-first is “optimal” because it yields lowest average latency

* |[n practice no single scheduling policy is best

* Example: Shortest-task-first needs accurate a priori estimate of task size
Also, what about tail latency?

* There are many practical issues:
 How is work dispatched to processors?
 How do processors wait for work?

 What is a “processor”? How is it allocated?
* E.g.: kernel thread managed by Linux scheduler



These practical issues matter
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Session focuses on practical issues

* Arachne: Scheduling short tasks on a virtual resource (threads) leads to
poor utilization/performance

 TAM: Several common problems (e.g., hidden contention, ordering
constraints) prevent systems from being schedulable

* uTune: Right threading model for multi-tiered microservices depends
critically on load

* RobinHood: Tail latency depends on request structure and latency of
backend services out of our control



Running example: request in multi-tier system
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Running example: request in multi-tier system




Problem observed by Arachne

Busy-waiting for c,b,d,e

wastes CPU
(e.g., write replication in RAMCloud)




Problem observed by uTune

Polling at high load wastes
CPU; blocking at low load
causes expensive wakeups




Problem observed by TAM

Hidden contention
causes unfairness

Ordering constraint b — d
reduces scheduling options




Problem observed by RobinHood

—

Latency depends on request
structure —i.e., max(b+d,c,e)

— which is typically ignored

Backend causing tail
latency is unpredictable,
time-varying



Problem observed by all papers

Cache misses/locality
affect tail latencies!



Solution: Arachne

* Adaptively and exclusively assign
CPU cores to applications; let app
schedule user threads

* Designed to minimize cache misses
(e.g., no ready queues)

* Improved Memcached, RAMCloud

Arachne: Core-Aware Thread Management

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft. and John Ousterhout
{hg6.gianli jspeiscrkraftp.ouster} @cs.stanford.edu

Stanford University

Abstract

Arachne is a new user-level implementation of threads that
provides both low latency and high throughput for appli-
cations with extremely short-lived threads (only a few mi-
croscconds). Arachne is core-aware: cach application de-
termines how many cores it needs, based on its load: it al-
ways knows exactly which cores it has been allocated, and

it controls the placement of its threads on those cores. A
central core arbiter allocates cores between applications.
Adding Arachne to memcached improved SLO-compliant
throughput by 37%. reduced tail latency by more than 10x,
and allowed memcached to coexist with background ap-
plications with almost no performance impact. Adding
Arachne to the RAMCloud storage system increased its
write throughput by more than 2.5x. The Arachne thread-
ing library is optimized to minimize cache misses: it can
initiate a new user thread on a different core (with load bal-
ancing) in 320 ns. Arachne is implemented entirely at user
level on Linux: no kernel modifications are needed.

1 Introduction

Advances in networking and storage technologies have
made it possible for datacenter services to operate at ex-
ceptionally low latencies [S]. As aresult, avariety of low-

latency services have been developed in recent years, in-
cluding FaRM [11], Memcached [23], MICA [20], RAM-
Cloud [30], and Redis [34]. They offer end-toend r-
sponse times as low as 5 ps for clients within the same
datacenter and they have internal request service times as
low as 1-2 us. These systems employ a variety of new
techniques to achieve their low latency, including polling
instead of interrupts, kemnel bypass, and run to comple-
tion [6,31].

However. it is difficult to construct services that pro-
vide both low latency and high throughput. Techniques
for achieving low latency, such as reserving cores for peak
throughput or using polling instead of interrupts, waste
resources. Multi-level services, in which servicing one re-
quest may require nested requests to other servers (such
as for replication), create additional opportunities for re-
source underutilization, particularly if they use polling to
reduce latency. Background activities within a service,
such as garbage collection, cither require additional re-
served (and hence underutilized) resources, or risk in-
terference with foreground request servicing. Ideally, it
should be possible to colocate throughput-oriented ser-
vices such as MapReduce [10] or video processing [22]
with low-latency services, such that resources are fully

occupied by the throughput-oriented services when not
needed by the low-latency services. However, this is rarely
attempted in practice because it impacts the performance
of the latency-sensitive services.

One of the reasons it is difficult to combine low latency
and high throughput is that applications must manage their
parallelism with a virtual resource (threads): they cannot
tell the operating system how many physical resources
(cores) they need, and they do not know which cores have
been allocated for their use. As a result, applications can-
not adjust their internal paralk lism to match the resources
available to them, and they cannot use application-specific
knowledge to optimize their use of resources. This can
lead to both under-utilization and over-commitment of
cores, which results in poor resource utilization and/or
suboptimal performance. The only recourse for appli-
cations is to pin threads to cores; this results in under-
utilization of cores within the application and does not
prevent other applications from being scheduled onto the
same cores.

Arachne is a thread management system that solves
these problkems by giving applications visibility into the
al resources they are using. We call this approach
core-aware thread management. In Arachne, application
threads are managed entirely at user level: they are notvis-
ible to the operating system. Applications negotiate with
the system over cores, not threads. Cores are allocated
for the exclusive use of individual applications and remain
allocated to an application for long intervals (tens of mil-
liseconds). Each application alway s knows exactly which
cores it has been allocated and it decides how to sched-
ule application threads on cores. A core arbiter decides
how many cores to allocate to cach application, and ad-
justs the allocations in response to changing application
requirements.

User-level thread management systems have been im-
pkmented many times in the past [39, 14, 4] and the basic
features of Arachne were prototy ped in the carly 1990s in
the form of scheduler activations [2]. Arachne is novel in
the following ways:

* Arachne contains mechanisms to estimate the number
of cores needed by an application as it runs.

* Arachne allows cach application to define a core pol-
icy, which determines at runtime how many cores the
application needs and how threads are placed on the
available cores.

® The Arachne runtime was designed to minimize cache
misses. It uses a novel representation of scheduling




Solution: TAM

* Automatically generate and
visualize Thread Architecture
Model (TAM) of system

e Use TAM to identify (and
address) common problems
preventing schedulability

* Improved HBase

Principled Schedulability Analysis for Distributed Storage
Systems using Thread Architecture Models

Suli Yang®, Jing Liu', Andrea C. Arpaci-Dusseau’, Remzi H. Arpaci-Duss

Ant Financial Services Group®

Abstract

In this paper, we present an approach to sy stematically
examine the schedulability of distributed storage sys-
tems, identify their scheduling probkems, and enable ef-
fective scheduling i systems. We use Thread Ar-
chitecture Models (TAMs) to describe the behavior and
interactions of different threads in a system, and show
both how to construct TAMs for existing systems and
utilize TAMs to identify critical scheduling problems.
We identify five common problems that prevent a system
from providing schedulability and show that these prob-
lems arise in existing systems such as HBase, Cassandra,
MongoDB, and Riak, making it difficult or impossible to
realize various scheduling disciplines. We demonstrate
how to address these schedulability problems by devel-
oping Tamed-HBase and Mwzzkd-HBase, sets of mod-
ifications to HBase that can realize the desired schedul-

ing disciplines, including faimess and priority schedul-
ing, even when presented with challenging workloads.

1 Introduction

The modemn data center is built atop massive, scalabk:

storage systems [12, 23 . 51]. For exampk, a typical
Google cluster consists of tens of thousands of machines,
with PBs of storage spread across hard disk drives (or
SSDs) [51]. These expansive storage resources are man-
aged by Colossus, a second-generation scalabke file
tem that replaced the original GFS [25]; many critical
Googlke applications (e.g., Gmail and Youtube), as well
as generic cloud-based services, co-utilize Colossus and
thus contend for cluster-wide storage resources such as
disk space and IO bandwidth.

As aresult, a critical aspect of these storage systems is
how they share resources. If, for example, requests from
one application can readily drown out requests from an-
other, building scalable and predictabk applications and
services becomes challenging (if not impossible).

To address these concemns, scalable storage systems
must provide correct and efficient request scheduling as
a fundamental primitive. By controlling which client
or application is serviced, critical features including fair
sharing [28, 38, 58, 66], throughput guarantees [54, 68],
low tail latency [19, 29, 47, 63, 72] and performance iso-
lation [9, 55, 62] can be successfully realized.

Unfortunately. modemn storage systems are complex,
concurrent programs. Many systems are realized via an

* Wark done while at University of Wisconsin-Madison.
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intricate serics of stages, queues, and thread pools, based
loosely on SEDA design principles [64]. For examplke,
HBase [24] consists of ~500K lines of code, and involves
~1000 interacting threads within each server when run-
ning. Understanding how to introduce scheduling control
into systems is challenging even for those who develop
them; a single request may flow through numerous stages
across multiple machines while being serviced.

All of the open-source storage systems we examined
have significant scheduling deficikencies, thus rendering
them unable to achieve desired scheduling goals.  As
shown in Figure 1. the original HBase fails to provide
weighted faimess or isolation against background work-
loads, yet our implemenation of Muzzlkd-HBase suc-
cessfully achieved these goals. Such scheduling deficien-
cies have also caused significant problems in production,
including extremely low write throughput or even data
loss for HBase [5], unbounded read latency for Mon-
goDB [6, 7], and imbalance between workloads in Cas-
sandra [4]. All above problems have been assigned major
or higher priority by the developers, but remain unsolved
due to their complexities and the amount of changes re-
quired to the systems.

To remedy this problem, and to make the creation of
flexible and effective scheduling policies within com-
pkx storage systems casy, this paper presents a novel
approach to such schedulability analysis, which allows
systematic reasoning on how well a system could sup-
port scheduling based on its thread architecture. Specif-
ically, we define a Thread Architecture Model (TAM),
which captures the behavior and interactions of differ-
ent threads within a system. By revealing the resource




Solution: uTune

* Taxonomize threading models to
understand effect on tail latency

* Dynamically switch threading
model based on load

* Improved services from uSuite

W Tune: Auto-Tuned Threading for OLDI Microservices

Akshitha Sriraman

Thomas F. Wenisch

University of Michigan
akshitha@umich edu. twenisch@umich.adu

ABSTRACT

Modem On-Line Data Intensive (OLDI) applications have
evolved from monolithic systems to instead comprise
numerous, distributed microservices interacting via Re-
moke Procedure Calls (RPCs). Microservices face sub-
millisecond (sub-ms) RPC latency goals, much tighter
than their monolithic counterparts that must meet > 100
ms latency targets. Sub-ms—scak threading and concur-
rency design efiects that were once insignificant for such
monolithic services can pow come to dominate in the
sub-ms—scale microservice regime. We investigate how
threading design critically impacts microservice tail la-
tency by developing a raxonomy of threading models—a
structured understanding of the implications of how mi-
croservices manage concurrency and interact with RPC
interfaces under wide-ranging loads. We develop u Tune,
a system that has two features (1) a novel framework that
abstracts threading model implementation from applica-
tion code. and (2) an automatic load adaptation sysem
that curtails microservice tail laiency by exploiting in-
herent latency trade-offs revealed in our taxopomy to
transition among threading models. We study pTune in
the context of four OLDI applications to demonstrate up
to 1.9x tail laiency improvement over static threading
choices and state-of-the-art adaptation ®chniques.

1 Introduction

On-Line Data Intensive (OLDI) applications, such as web
search, advertising, and online retail, form a major frac-
tion of data center applications [113]. Meeting soft mal-
time deadlines in the form of Service Level Objectives
(SLOs) determines end-user experience [21,46,55.95]
and is of paramount importance. Whereas OLDI appli-
cations once had largely monolithic software architec-
tures [50], modem OLDI applications comprise numer-
ous, distributed microservices [66, 90, 116] like HTTP
conpection termination, key-value serving [72]. query
rewriting [48], click tracking, access-control manage-

ment, protocol routing [25), etc. Several companies,
such as Amazon [6], Netflix [1], Gilt [37], LinkedIn [17],
and SoundCloud [9]. have adoped microservice architec-
tures to improve OLDI development and scalability [144).
These microservices are composed via standardized Re-
moke Procedure Call (RPC) interfaces, such as Google's
Stubby and gRPC [18] or Facebook/ Apache 's Thrift [14].

Whereas monolithic applications face = 100 ms
il (99%+%) laency SLOs (e.g..~300 ms for web
search [126, 133, 142, 150]), microservices must ofien
achieve sub-ms (e.g., ~100 us for protocol routing [151])
tail laencies as many microservices must be invoked se-
rially to serve a user’s query. Forexample, a Facebook
news feed service [79] query may flow through a serial
pipeline of many microservices, such as (1) sigma [15]:
a spam filter, (2) McRouter [118]: a protocol router, (3)
Tao [56]: a distributed social graph data store, (4) My-
Rocks [29]: a user database, etc., thereby placing tight
sub-ms latency SLOs on individual microservices. We ex-
pect continued growth in OLDI data sets and applications
to Rquire composition of ever more microservices with
increasingly complex ineractions. Hence, the pressure
for better microservice latency SLOs continually mounts.

Threading and concurrency design have been shown
to critically affect OLDI response latency [76, 148]. But,
prior works [71] focus on monolithic services, which
typically have > 100 ms tail SLOs [111]. Hence, sub-ms-
scale OS and network overheads (e.g.. a context switch
cost of 5-20 ps [101, 141]) are often insignificant for
monolithic services. However, sub-ms-scale microser-
vices differ intrinsically: spurious context switches, net-
work/RPC protocol delays, inept thread wakeups, or lock
contention can dominate microservice laency distribu-
tions [39]. For example, even a single 20u s spurious con-
text switch implies a 20% laency penalty for a request to a
100 ps SLO protocol routing microservice [151]. Hence,
prior conclusions must be revisited for the microservice
regime [49].

In this paper. we study how threading design affects mi-




Solution: RobinHood

 Explicitly identify backends
contributing to tail latency

* Dynamically reallocate cache
resources from cache-rich to
cache-poor (those causing tail)

* Improved OneRF production
system at Microsoft

RobinHood: Tail Latency-Aware Caching —
Dynamically Reallocating from Cache-Rich to Cache-Poor

Daniel S. Berger', Benjamin Berg', Timothy Zhu?, Mor Harchol-Balter', and Siddhartha Sen®

!Camnegie Mellon University — “Penn State — *Microsoft Research

Abstract

Tail latency is of great importance in user-facing web ser-
vices. However, maintaining low tail latency is challkeng-
ing, because a single request to a web application server
results in multiple queries to complex, diverse backend
services (databases, mcommender systems, ad systems,
etc.). A request is not complete until all of its queries have
completed. We analyze a Microsoft production system
and find that backend query latencies vary by more than
two orders of magnitude across backends and over time,
resulting in high request tail latencies.

We propose a novel solution for maintaining low re-
quest tail latency: repurpose existing caches to mitigate
the effects of backend latency variability, rather than just
caching popular data. Our solution, RobinHood, dynam-
ically reallocates cache resources from the cache-rich
(backends which don’t affect request tail latency) to the
cache-poor (backends which affect request tail laency).
We evaluate RobinHood with production traces on a 50-
server cluster with 20 different backend systems. Sur-
prisingly, we find that RobinHood can directly address
tail latency even if working sets are much larger than the
cache size. In the presence of load spikes, RobinHood
meets a 150ms P99 goal 99.7% of the time, whereas the
next best policy meets this goal only 70% of the time.

1 Introduction
Request tail latency matters. Providers of large user-
facing web services have long faced the challenge of
achieving low request lakency. Specifically, i
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Figure 1: In a multitier system, users submit individual
requests, which are received by application servers. To
complete a request, an application server issues a series of
queries to various backend services. The request is only
complete when all of its queries have completed.

backend services. Since cach request must wait for all
of its queries to complete, the overall request latency is
defined to be the latency of the request’s slowest query.
Even if almost all backends have low tail latencies, the
tail latency of the maximum of several queries could be
high.

For example, consider a stream of requests where cach
request queries a single backend 10 times in parallel.
Each request’s lakency is equal to the maximum of its
ten queries, and could therefore greatly exceed the P99
query latency of the backend. The P99 request latency
in this case actually depends on a higher percentile of
backend query latency [26]. Unfortunately, as the number
of backends in the system increases and the workload

are interested in maintaining low fail latency, such as the
99th percentile (P99) of request latencies [26,27,36,44,
63,84,93]. Maintaining low tail latencies in real-world
systems is especially difficult when incoming requests
are plex, consisting of multiple gueries [4,26, 36,
91], as is common in multitier architectures. Figure 1
shows an example of a multitier architecture: cach user
request is received by an application server, which then
sends querices to the necessary backends, waits until all
queries have completed, and then packages the results
for delivery back to the user. Many large web services,
such as Wikipedia [72], Amazon [27], Facebook [20],
Google [26] and Microsoft, use this design pattern.

The queries generated by a single request are indepen-
dently processed in paralkel, and may be spread over many

bx s more h = P99 request latency may
depend on different (higher or lower) percentikes of query
latency for each backend, and determining what these
important percentiles are is difficult

To illustrate this complexity, this paper focuses
on a concrete example of a large multitier architec-
tre:  the OneRF page rendering framework at Mi-
crosoft. OneRF serves awide range of content including
news (msn.com) and online retail software stores (mi-
crosoft.com, xbox.com). It relies on more than 20 back-
end systems, such as product catalogues, recommender
systems, and user entitkement systems (Figure 1).
The source of tail latency is dynamic. It is common in
multitier architectures that the particular backend causing
high request latencies changes over time. For example,




Thanks!

(And please attend the Scheduling session)



