
Topic preview: Scheduling

Siddhartha Sen
Microsoft Research NYC



Scheduling

• Tells you how and when to assign tasks to processors
• Task = anything you can execute
• Processor = anything you can execute it on

• Many different settings
• Online, offline
• Within a machine, across machines
• Single-tiered, multi-tiered

• Several different objectives
• Latency, throughput
• Priority, fairness



Scheduling

• Tells you how and when to assign tasks to processors
• Task = runnable thread, web request, MapReduce job
• Processors = CPU core, service backend, cluster machine

• Many different settings
• Online, offline
• Within a machine, across machines
• Single-tiered, multi-tiered

• Several different objectives
• Latency, throughput
• Priority, fairness

web request ® service backend ® worker thread ® kernel thread ® CPU core



Scheduling

• Tells you how and when to assign tasks to processors
• Task = runnable thread, web request, MapReduce job
• Processors = CPU core, service backend, cluster machine

• Many different settings
• Within a machine, across machines
• Single-tiered, multi-tiered
• Online, offline

• Several different objectives
• Latency, throughput
• Priority, fairness



All you need to know



Theoretical view

processorqueuetask

…



Theoretical view

…



Theoretical view

…

arrival process
(e.g., Poisson)



Theoretical view

…

task size service time
(e.g., exponential dist.)



Theoretical view

… 724

task priority



Theoretical view

…

scheduling policy
• first-come-first-served
• shortest-task-first
• priority

?

724



context switch 
(by dispatcher)

Theoretical view

…

preemptive?

fair sharing



scheduling policy
• first-come-first-served
• shortest-task-first
• priority

• round-robin (time quantum)
• shortest-remaining-time-first*
• priority

Theoretical view

…

* related to work on progress indicators



Theoretical view

…



Theoretical view

…

…

processor affinity
(cache locality, NUMA)

synchronous/ 
asynchronous

blocking/ 
polling

fixed-sized pool/ 
dynamic allocation



Theoretical view

…

…

queue network



Takeaways?

• Lots of terms, organized by queueing theory

• Theory makes simplifying assumptions
• Example: Shortest-task-first is “optimal” because it yields lowest average latency

• In practice no single scheduling policy is best
• Example: Shortest-task-first needs accurate a priori estimate of task size

Also, what about tail latency?

• There are many practical issues:
• How is work dispatched to processors?
• How do processors wait for work?
• What is a “processor”? How is it allocated? 

• E.g.: kernel thread managed by Linux scheduler



These practical issues matter

From TAM paper



Session focuses on practical issues

• Arachne: Scheduling short tasks on a virtual resource (threads) leads to 
poor utilization/performance

• TAM: Several common problems (e.g., hidden contention, ordering 
constraints) prevent systems from being schedulable

• uTune: Right threading model for multi-tiered microservices depends 
critically on load

• RobinHood: Tail latency depends on request structure and latency of 
backend services out of our control



Running example: request in multi-tier system

a

c

b

e

d

From uTune paperFrom RobinHood paper



Running example: request in multi-tier system

a

c

b

e

d



Busy-waiting for c,b,d,e
wastes CPU
(e.g., write replication in RAMCloud)

Problem observed by Arachne

a

c

b

e

d



Problem observed by uTune

a

c

b

e

d

Polling at high load wastes 
CPU; blocking at low load 
causes expensive wakeups



Problem observed by TAM

a

c

b

e

d

Ordering constraint b ® d 
reduces scheduling options

DB

Hidden contention 
causes unfairness



Problem observed by RobinHood

a

c

b

e

d

Latency depends on request 
structure – i.e., max(b+d,c,e) 
– which is typically ignored

Backend causing tail 
latency is unpredictable, 
time-varying

DB



Problem observed by all papers

a

c

b

e

d

Cache misses/locality 
affect tail latencies!

DB



Solution: Arachne

• Adaptively and exclusively assign 
CPU cores to applications; let app 
schedule user threads
• Designed to minimize cache misses 

(e.g., no ready queues)
• Improved Memcached, RAMCloud



Solution: TAM

• Automatically generate and 
visualize Thread Architecture 
Model (TAM) of system 
• Use TAM to identify (and 

address) common problems 
preventing schedulability
• Improved HBase



Solution: uTune

• Taxonomize threading models to 
understand effect on tail latency
• Dynamically switch threading 

model based on load 
• Improved services from uSuite



Solution: RobinHood

• Explicitly identify backends
contributing to tail latency
• Dynamically reallocate cache 

resources from cache-rich to 
cache-poor (those causing tail)
• Improved OneRF production 

system at Microsoft



Thanks!
(And please attend the Scheduling session)


