Differentially Private Data Release under Partial Information

David Zeber Martin Lopatka

Systems Research Group, Mozilla

PEPR, 12 August 2019

Data and privacy

User data!

Utility:

- Learning about users
 - build insights or models by computing summaries & aggregations
- Sharing
 - internally across different parts of the org
 - with business partners
 - publicly

What are the privacy implications for sensitive data?

< ロト < 同ト < ヨト < ヨト

Differential Privacy as a solution

Differential Privacy (DP) is the state-of-the-art for releasing reports/views based on sensitive data

• avoids revealing "too much" about the users in the dataset

E.g. a DP view allows for further analysis without needing access to the raw data

• can be shared with a partner

・ロト ・ 同ト ・ ヨト ・ ヨト

Differential Privacy

- A specific guarantee to individuals whose data is included in a dataset
- Limits how much can be learnt about an individual from a DP-protected dataset
- Limit is quantified by a number (ϵ): **privacy budget**

DP mechanisms

To use DP, apply a randomized operation (mechanism) to the dataset.

- Original data is masked by injecting randomness in a strategic way
- Makes "influential" values in the dataset less influential

・ロト ・ 同ト ・ ヨト ・ ヨト

Applying DP

In practice, DP is non-trivial to apply

- Real-world datasets are more complex than what is typically described in the literature
- Multiple mechanisms may be available

Selecting a "good" mechanism is important:

 a bad choice could end up giving low utility results while consuming privacy budget

Selecting a DP mechanism

- Which mechanism will perform best depends on the properties of the particular dataset
- "Peeking" at the data violates DP

Solutions:

- draw on literature set in the same domain
- allocate some of the privacy budget to learning characteristics in a DP way

< □ > < □ > < □ > < □ > < □ > < □ >

Existing partial information

In practice, we often do have prior partial knowledge about the dataset:

- may satisfy known constraints
 - e.g. limitations of an app or reasonable user behaviour
- other summary information about the users may already have been shared
 - e.g. addons.mozilla.org lists raw installation counts

< ロト < 同ト < ヨト < ヨト

Partial information example

U	uBlock Origin @Incommended) Finally, an efficient blocker. Easy on CPU and memory. 貴貴貴貴者: Raymond Hill	≗ 4,653,854 users
*	Video DownloadHelper @ Incommended) The easy way to download and convert Web videos from hundreds of YouTube-like sites. 者音音言言: mig	≗ 2,595,585 users
\$	NoScript Security Suite @Iterammede) The best security you can get in a web browserf Allow active content to run only from sites you trust, and protect yourself against XSS other web security exploits. Disabled and can't reinstall They? (Thyruf, com/more-ext-cent 未会主任, Giorgio Maone	≗ 1,514,432 users
	Facebook Container @incommender) Prevent Facebook from tracking you around the web. The Facebook Container extension for Friefox helps you take control and isolate your web activity from Facebook. 東食食食子: Motilia	≗ 652,648 users
Ø	PrivacyBadger @Recommended) Automatically learns to block invisible trackers. ★★★★★ EFF Technologists	≗ 599,855 users

Figure: addons.mozilla.org (recommended add-ons)

Zeber, Lopatka (Mozilla)

PEPR 2019 9/32

Proposed DP selection approach

Data model: describe a dataset probabilistically in terms of how it was produced

- i.e. as a generative distribution over possible datasets
- known constraints built in via conditioning

Mechanism selection: evaluate candidate DP mechanisms by simulating over a sample of possible datasets

・ロト ・ 同ト ・ ヨト

Proposed DP selection approach

Benefits:

- Can incorporate partial information of differing specificities
- Does not consume any privacy budget
- Does not require access to the private dataset (e.g. could be performed by a third party)

Problem setting

Data model: user-item data

- $n \times m$ user-item matrix
- entry (i, j) = 1 if user *i* interacted with item *j*

$$\begin{array}{c} (items) \\ A & B & C & D \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 0 & 0 \\ (users) & 3 & 1 & 0 & 1 & 0 \\ 4 & 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \end{array}$$

User-item data: output

Goal: report the item frequency counts with privacy protection

labeled column sums of the matrix

Influence of a single user: adds 1 to the count for each item they report

• • • • • • • • • •

User-item data: mechanism

- Limit each user to k items selected at random
- Occupie the second counts over the limited items
- Solution Add $Lap(k/\epsilon)$ random noise to each count

Satisfies *e*-DP

User-item data: mechanism

User-item mechanism tradeoff

This introduces a bias-variance tradeoff tuned by the parameter k

- If many users have close to *m* items, would want *k* to be large (lower bias)
- If most users have few items, would want k to be small (lower noise)

< □ > < □ > < □ > < □ > < □ > < □ >

- A team at Mozilla curates a dataset containing a list of "favourite" sites (URLs) from a subset of Firefox users*
- Access to raw data is highly restricted for privacy reasons
- Data curators are willing to release a DP version of the frequency distribution if they are provided a query to run

* who have opted in to this data collection

What do we know about this data?

• Under the policies governing this dataset, the curators are able to share internally the site counts (i.e. frequency distribution) *with URLs scrubbbed*

We can use this to build a generative model for this dataset with constraints.

< □ > < □ > < □ > < □ > < □ > < □ >

Item frequencies

19/32

Known item frequencies

Generative model: setting

- Dataset is an n (users) $\times m$ (items) binary matrix
- Fix column ordering from highest to lowest column sum, same for rows
- Known: *m*, column sums $n \ge c_1 \ge \cdots \ge c_m \ge 1$

イロト イヨト イヨト

Generative model: number of rows

In this case, number of users *n* is not known directly. However, column sums impose constraints:

- $n > c_1 = \max c_i$ (single copy of each item per user)
- $n \leq \sum_{i} c_{i}$ (at least 1 item per user)

・ロト ・ 同ト ・ ヨト

Examples: number of rows

Generative model: row sums

Given *n*, we have constraints on the row sums (number of items reported by each user):

•
$$m \ge r_1 \ge \cdots \ge r_n \ge 1$$

• $\sum_{i=1}^{n} \min(r_i, p) \ge \sum_{j=1}^{p} c_j$ for p = 1, ..., m (Gale-Ryser conditions for binary matrices)

These can be reformulated into sequential bounds $L_i \leq r_i \leq U_i$ where $L_i = L(r_1, ..., r_{i-1})$ and $U_i = U(r_1, ..., r_{i-1})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

Examples: row sums

Examples: matrices

Zeber, Lopatka (Mozilla)

▶ ▲ ■ ▶ ■ 少への PEPR 2019 25/32

Generative model

- Select *n* uniformly among possible choices
- Given n, select r uniformly subject to constraints
- Given marginal counts, select a binary matrix uniformly

Performed using MCMC sampling (cf. Verhelst, 2007)

< □ > < □ > < □ > < □ > < □ > < □ >

Mechanism selection

Given a feasible matrix:

- **()** Simulate the DP mechanism for different values of k with the desired ϵ
- Ocmpute squared-error loss relative to the true item counts
- Stimate MSE by averaging over multiple replicates of (1) and (2)

Replicate the above over a sample of feasible matrices

< □ > < □ > < □ > < □ > < □ > < □ >

Evaluation results

Average error of DP item frequencies for each k n = 2,000, m = 100, sample size = 100,000

Zeber, Lopatka (Mozilla)

DP with partial information

Evaluation results

Average error of DP item frequencies for each k (zoomed) n = 2,000, m = 100, sample size = 100,000

Zeber, Lopatka (Mozilla)

DP with partial information

PEPR 2019 29/32

Conclusion

We present an alternative approach to mechanism selection for DP:

- does not consume privacy budget
- does not require access to the private dataset
- leverages any available ancillary information about the problem setting

Conclusion

Vision: a software package applicable to a number of domains assisting in

- formulating constraints
- running simulations
- visualizing and interpreting results

Thank you!

Zeber, Lopatka (Mozilla)

・ロト ・四ト ・ヨト ・ヨト